Изменения

Перейти к: навигация, поиск

Триангуляция Делоне на Сфере

639 байт добавлено, 00:52, 21 ноября 2016
Нет описания правки
{{Лемма
|about=1
|id=1
|statement=Алгоритм найдет ближайшую точку
|proof=Допустим, что это не так. Это значит, что в внутри окружности с центром в точке <tex>Q</tex>, на которой лежит точка <tex>P</tex>, есть какие-то другие точки. То есть другими словами существует плоскость <tex>\alpha</tex> проходящая через точку <tex>P</tex>, выше которой находятся точка <tex>Q</tex>(так как она центр) и какие-то точки триангуляции.
{{Лемма
|about=2
|id=2
|statement=Среднее число точек, лежащих внутри окружности с центром в точке <tex>Q</tex> и проходящей через точку <tex>V_{i + 1}</tex> равно <tex>O(1)</tex>.
|proof=Рассмотрим точки триангуляции <tex>\{A_i\}</tex>. Для каждой точки <tex> A_i</tex> проведем окружность с центром в ней, проходящую через ближайшую к ней точку. Посчитаем во сколько окружностей в среднем попадет точка какая-то точка <tex>U</tex>.
{{Лемма
|about=3
|id=3
|statement=Средняя степень точек на <tex>i</tex> уровне внутри окружности с центром в точке <tex>Q</tex> и проходящей через точку <tex>P_{i + 1}</tex>(ближайшая точка на <tex>i + 1</tex> уровне)
|proof=Пусть есть функция <tex>circle(q, p, i)</tex>, возвращающая <tex>1</tex>, если точка <tex>p</tex> принадлежит окружности с центром в точке <tex>q</tex>, проходящую через ближайшую к <tex>q</tex> на <tex>i</tex> уровне точку, а иначе <tex>0</tex>.
 
Пусть <tex>Points_i</tex> {{---}} множество точек на <tex>i</tex>-ом уровне.
<tex>X</tex> {{---}} степень вершины внутри окружности, тогда:
<tex dpi = 150130>E(X) = \fracdfrac{\sum\limits_{q \in Points_{i - 1}}{\sum\limits_{p \in Points_{i - 1}}{circle(q, p, i) \cdot deg(p)}}}{\left| Points_{i - 1} \right|} =</tex>
Меняем порядок суммирования, и получаем:
<tex dpi = 150130>= \fracdfrac{\sum\limits_{p \in Points_{i - 1}}{deg(p) \sum\limits_{q \in Points_{i - 1}}{circle(q, p, i)}}}{\left| Points_{i - 1} \right|} \leqslant</tex>
По предыдущей лемме получаем:
<tex dpi = 150130>\leqslant \fracdfrac{\sum\limits_{p \in Points_{i - 1}}{deg(p) \sum\limits_{1 \dots \infty}{i \cdot p \cdot (1 - p) ^ i}}}{\left| Points_{i - 1} \right|} \approx</tex> <tex dpi = 130>\approx \dfrac{\sum\limits_{p \in Points_{i - 1}}{deg(p)}}{\left| Points_{i - 1} \right|} = \dfrac{O(n)}{n} = O(1)</tex>}} {{Лемма|about=4|id=4|statement=Один уровень в среднем обрабатывается за <tex>O(1)</tex>|proof=По [[#2|лемме 2]] алгоритм пройдет в среднем <tex>O(1)</tex> вершин, степень которых так же равна по [[#3|лемме 3]] <tex>O(1)</tex>, следовательно один уровень будет обработан за <tex>O(1)</tex>.}}
<tex dpi = 150>\approx \frac{\sum\limits_{p \in Points_{i - 1}}{deg(p)}}{\leftТеорема| Points_{i - 1} \rightabout=Следствие|} statement= \frac{Локализация в среднем работает за <tex>O(n)}\log{n} = O(1)</tex>
}}
212
правок

Навигация