Изменения

Перейти к: навигация, поиск

Триангуляция полигонов (ушная + монотонная)

34 байта добавлено, 13:52, 24 января 2014
м
Ушной метод
Доказательство будем вести по индукции. Базовый случай: <tex>n = 4</tex>. Предположим для всех многоугольников, количество вершин в которых не больше <tex>n</tex>, теорема верна. Рассмотрим многоугольник <tex>P</tex>, в котором <tex>n+1</tex> вершина. Далее возможны два случая:
[[Файл:Ear case1.jpg‎|300px|thumb|left|Случай, когда <tex>v_i</tex> является ухом в <tex>P</tex>]]
* Произвольная выпуклая вершина <tex>v_i</tex> многоугольника <tex>P</tex> является ухом. Отрезав это ухо, мы уменьшим число вершин <tex>P</tex> на одну. В результате, получиv <tex>n</tex>-вершинный многоугольник <tex>P'</tex>. По предположению индукции у него существует два непересекающихся уха. Учитывая, что уши <tex>P'</tex> являются ушами и <tex>P</tex>, несложно заметить, что для <tex>P</tex> теорема верна.
* Произвольная выпуклая вершина <tex>v_i</tex> многоугольника <tex>P</tex> не является ухом. В таком случае в треугольнике <tex>\Delta v_{i-1}v_{i}v_{i+1}</tex> лежат вершины, принадлежащие <tex>P</tex>. Из этих вершин выберем вершину <tex>q</tex>, которая будет ближе всего к <tex>v_i</tex>. Проведём отрезок <tex>Q</tex>, который разделит <tex>P</tex> на два многоугольника: <tex>P_1</tex> и <tex>P_2</tex>. В каждом из них будет не более <tex>n</tex> вершин, следовательно у каждого будет по два непересекающихся уха. Даже если предположить, что ухо из <tex>P_1</tex> и ухо из <tex>P_2</tex> будут пересекаться по стороне <tex>v_{i}q</tex>, в <tex>P</tex> всё равно будет не менее двух непересекающихся ушей.
[[Файл:Ear_case2.jpg|400px|thumb|center|Случай, когда <tex>v_i</tex> не является ухом в <tex>P</tex>. Желтым и зелёным отмечены уши, принадлежащие <tex>P_2</tex> и <tex>P_1</tex> соответственно.]]
}}
170
правок

Навигация