Изменения

Перейти к: навигация, поиск

Уменьшение размерности

15 676 байт добавлено, 22:47, 30 января 2019
Нет описания правки
Под '''уменьшением размерности''' (англ. ''dimensionality reduction'') в машинном обучении подразумевается уменьшение числа признаков датасетанабора данных. Наличие в нем признаков избыточных, неинформативных или слабо информативных может понизить эффективность модели, а после такого преобразования она упрощается, и соответственно уменьшается размер набора данных в памяти и ускоряется работа алгоритмов ML на нем. Уменьшение размерности может быть осуществлено методами отбора выбора признаков (англ. ''feature selection'') или выделения признаков (англ. ''feature extraction'').==Feature selectionВыбор признаков==Методы '''feature selectionвыбора признаков''' оставляют некоторое подмножество исходного набора признаков, избавляясь от признаков избыточных и слабо информативных. Основные преимущества этого класса алгоритмов:*Уменьшение вероятности [[переобучение|переобучения]];*Увеличение точности предсказания модели;*Сокращение времени обучения;*Увеличивается семантическое понимание модели.
Все методы отбора выбора признаков можно разделить на 5 типов, которые отличаются алгоритмами выбора лишних признаков.===FiltersФильтры==='''Фильтры''' (англ. ''filter methods'') измеряют релевантность признаков на основе функции $\mu$, и затем решают по правилу $\kappa$, какие признаки оставить в результирующем множестве.
Фильтры могут быть:
*Одномерные (англ. ''univariate'') {{---}} функция $\mu$ определяет релевантность одного признака по отношению к выходным меткам. В таком случае, обычно, измеряют "качество" каждого признака и удаляют худшие.;*Многомерные (англ. ''multivariate'') {{---}} функция $\mu$ определяет релевантность некоторого подмножества исходного множества признаков относительно выходных меток.
Распространенными вариантами для $\mu$ являются коэффициент :*Коэффициент ранговой корреляции Спирмена<ref>[https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient Определение коэффициента ранговой корреляции Спирмена]</ref>(англ. ''Spearman's rank correlation coefficient''): $p(x, y)=\displaystyle \frac{\sum_{i, j}(x_{ij}-\bar{x_j})(y_i-\bar{y})}{\sqrt{\sum_{i, j}(x_{ij}-\bar{x_j})^2\sum_i(y_i-\bar{y})^2}}$;*Information gain <ref>[https://en.wikipedia.org/wiki/Information_gain_in_decision_trees Определение information gain]</ref>: $IG(x, y)=\displaystyle -\sum_{i=1}^kp(c_i)\log_2{(p(c_i))}+\sum_{i=1}^{n}p(t_i)\sum_{j=1}^kp(c_j|t_i)log_2{(p(c_j|t_i))}$, и коэффициент Джинидругие.
Преимуществом группы фильтров является простота вычисления релевантности признаков в датасетенаборе данных, но недостатком в таком подходе является игнорирование возможных зависимостей между признаками.===WrappersОберточные методы===[[File:Feature_selection_wrapper_rus.png|450px|thumb|right|Процесс работы оберточных методов]]'''Оберточные методы''' (англ. ''wrapper methods'') находят подмножество искомых признаков последовательно, используя некоторый классификатор как источник оценки качества выбранных признаков, т.е. этот процесс является циклическим и продолжается до тех пор, пока не будут достигнуты заданные условия останова. Оберточные методы учитывают зависимости между признаками, что является преимуществом по сравнению с фильтрами, к тому же показывают большую точность, но вычисления занимают длительное время, и повышается риск [[переобучение|переобучения]].
[[FileСуществует несколько типов оберточных методов: детерминированные, которые изменяют множество признаков по определенному правилу, а также рандомизированные, которые используют генетические алгоритмы для выбора искомого подмножества признаков. Среди детерминированных алгоритмов самыми простыми являются:Feature_selection_Wrapper_Method*SFS (Sequential Forward Selection) {{---}} жадный алгоритм, который начинает с пустого множества признаков, на каждом шаге добавляя лучший из еще не выбранных признаков в результирующее множество;*SBS (Sequential Backward Selection) {{---}} алгоритм обратный SFS, который начинает с изначального множества признаков, и удаляет по одному или несколько худших признаков на каждом шаге.png|300px|thumb|right|Процесс работы оберточных методов]]
Два самых простых типа оберточных методов:*SFS Популярным оберточным методом является SVM-RFE (Sequential Forward SelectionSVM-based Recursive Feature Elimination) {{, который иногда также обозначается как встроенный <ref>[https://benthamopen.com/FULLTEXT/TOBIOIJ-11--}} жадный алгоритм, который начинает с пустого множества признаков, 117/ C. Embedded method]</ref>. Этот метод использует как классификатор [[Метод опорных векторов (SVM)| SVM]]<sup>[на каждом шаге добавляя лучший из еще 28.01.19 не выбранных признаков в результирующее множество*SBS (Sequential Backward Selection) {{---}} алгоритм обратный SFS, который начинает создан]</sup> и работает итеративно: начиная с изначального полного множества признаковобучает классификатор, и удаляет ранжирует признаки по одному или несколько худших весам, которые им присвоил классификатор, убирает какое-то число признаков и повторяет процесс с оставшегося подмножества фичей, если не было достигнуто их требуемое количество. Таким образом, этот метод очень похож на каждом шагевстроенный, потому что непосредственно использует знание того, как устроен классификатор.
===EmbeddedВстроенные методы===[[File:Feature_selection_embedded_rus.png|450px|thumb|right|Процесс работы встроенных методов]]Группа '''встроенных методов''' (англ. wrapper ''embedded methods'') очень похожа на оберточные методы, но для выбора признаков используется непосредственно структуру некоторого классификатора.В оберточных методах классификатор служит только для оценки работы на данном множестве признаков, тогда как встроенные методы используют какую-то информацию о признаках, которую классификаторы присваивают во время обучения.  Одним из примеров встроенного метода является реализация на [[Дерево решений и случайный лес| случайном лесе]]: каждому дереву на вход подаются случайное подмножество данных из датасета с каким-то случайным набор признаков, в процессе обучения каждое из деревьев решений производит "голосование" за релевантность его признаков, эти данные агрегируются, и на выходе получаются значения важности каждого признака набора данных. Дальнейший выбор нужных нам признаков уже зависит от выбранного критерия отбора. Встроенные методы используют преимущества оберточных методов и являются более эффективными, при этом на отбор тратится меньше времени, уменьшается риск [[переобучение|переобучения]], но т.к. полученный набор признаков был отобран на основе знаний о классификаторе, то есть вероятность, что для другого классификатора это множество признаков уже не будет настолько же релевантным. ===Другие методы===[[File:Feature_selection_Embedded_MethodFeature_selection_ensemble_rus.png|300px|thumb|right|Процесс Один из примеров процесса работы встроенных ансамблевых методов]]Есть и другие методы выбора признаков: '''гибридные''' (англ. ''hybrid methods'') и '''ансамблевые''' (англ. ''ensemble methods''). '''Гибридные методы''' комбинируют несколько разных методов выбора признаков, например, некоторое множество фильтров, а потом запускают оберточный или встроенный метод. Таким образом, гибридные методы сочетают в себе преимущества сразу нескольких методов, и на практике повышают эффективность выбора признаков. '''Ансамблевые методы''' применяются больше для наборов данных с очень большим числом признаков. В данном подходе для начального множества признаков создается несколько подмножеств признаков, и эти группы каким-то образом объединяются, чтобы получить набор самых релевантных признаков. Это довольно гибкая группа методов, т.к. для нее можно применять различные способы выбора признаков и объединения их подмножеств. <div style="clear:{{{1|both}}};"></div>
===Hybrid===
===Ensemble===
===Примеры кода scikit-learn===
==Feature extraction==
===Linear===
===Nonlinear===
===Примеры кода scikit-learn===
Пример кода, реализующего функцию оценки фильтра на основе коэффициента ранговой корреляции:
# Импорт библиотек
import pandas as pd
import numpy as np
# Вспомогательная функция для расчета корреляции
def correlation(X, Y):
return np.cov(X, Y) / np.sqrt(np.var(X) * np.var(Y))
 
# Сам фильтр на основе метрики ранговой корреляции
# Аргументы X -- значения объектов датасета для какой-то фичи, Y -- метки этих объектов
def measure_spearmans(X, Y):
xr = pd.Series(X).rank()
yr = pd.Series(Y).rank()
return correlation(xr, yr)
 
Пример кода, реализующего SVM-RFE wrapper:
# Импорт библиотек
import numpy as np
import pandas as pd
from sklearn import svm
 
# X -- наш датасет, Y -- массив меток
# N -- число признаков, которые хотим оставить, step -- сколько фичей удаляется на каждой итерации
# Возвращает массив из булевых переменных размерностью 1x[число признаков], показывающий, отбрасываем признак или нет
def RFE(X, Y, N, step = 10):
# cache_size нужен, если набор данных большой, иначе можно опустить
clfRFE = svm.SVC(kernel='linear', cache_size=1024)
featureCount = X.shape[1]
featureList = np.arange(0, featureCount )
included = np.full(featureCount, True)
curCount = featureCount
while curCount > N:
actualFeatures = featureList[included]
Xnew = X[:, actualFeatures]
clfRFE.fit(Xnew, Y)
curStep = min(step, curCount - N)
elim = np.argsort(np.abs(clfRFE.coef_[0]))[:curStep]
included[actualFeatures[elim]] = False
curCount -= curStep
return included
==Выделение признаков==
Другим способом уменьшить размерность входных данных является выделение признаков. Эти методы каким-то образом составляют из уже исходных признаков новые, все также полностью описывающие пространство набора данных, но уменьшая его размерность и теряя в репрезентативности данных, т.к. становится непонятно, за что отвечают новые признаки.
Все методы feature extraction можно разделить на '''линейные''' и '''нелинейные'''.
 
Одним из самых известных методов '''линейного''' выделения признаков является [[Метод главных компонент (PCA)| PCA]]<sup>[на 28.01.19 не создан]</sup> (Principal Component Analysis, рус. ''метод главных компонент''). Основной идеей этого метода является поиск такой гиперплоскости, на которую при ортогональной проекции всех признаков максимизируется дисперсия. Данное преобразование может быть произведено с помощью сингулярного разложения матриц и создает проекцию только на линейные многомерные плоскости, поэтому и метод находится в категории линейных.
 
К '''нелинейным''' методам, например, могут быть отнесены методы отображающие исходное пространство признаков на нелинейные поверхности или топологические многообразия. Одним из таких алгоритмов является [[Стохастическое вложение соседей с t-распределением |t-SNE]]<sup>[на 28.01.19 не создан]</sup> (t-distributed Stochastic Neighbor Embedding, рус. ''стохастическое вложение соседей с t-распределением''). Данный метод состоит из двух шагов: изначально строится распределение вероятностей по всем парам точек набора данных, каждая условная вероятность $p_{j|i}$ которого означает насколько точка $X_j$ близка к точке $X_i$ при гауссовом распределении вокруг $X_i$. Данное распределение как метрику похожести использует евклидово расстояние. Алгоритм старается получить отображение из точек размерности $\mathbb{R}^k$ в меньшую размерность $\mathbb{R}^d$, для этого вводится еще одно распределение, описывающее насколько точки из нового пространства похожи друг на друга, но используя при этом t-распределение Стьюдента с одной степенью свободы. Как метрику похожести двух распределений используется дивергенция Кульбака-Лейблера<ref>[https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence Дивергенция Кульбака-Лейблера]</ref>, и чтобы найти точки новой размерности $d$ запускается градиентный спуск для минимизации этой величины.
===Пример кода scikit-learn===
Пример выделения признаков с помощью PCA в scikit-learn:
# Импорт библиотек
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
 
X = ... # загрузка X
Y = ... # загрузка Y
# Разделение данных на train и test
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y)
 
clf = ... # берем какой-то классификатор
# Обучаем PCA для выделения 5 признаков
pca = PCA(n_components=5)
pca.fit(Xtrain)
# Изменяем наши наборы данных под выбранные признаки
Xtrain = pca.transform(Xtrain)
Xtest = pca.transform(Xtest)
# Обучаем классификатор и проверяем точность его работы
clf.fit(Xtrain, Ytrain)
print ("Score: %.6f" % clf.score(Xtest, Ytest))
===Пример на языке Scala===
SBT зависимость:
libraryDependencies '''+=''' "com.github.haifengl" '''%%''' "smile-scala" '''%''' "1.5.2"
Пример уменьшение размерности используя smile.feature.GAFeatureSelection<ref>[https://haifengl.github.io/smile/feature.html#genetic-algorithm-feature-selection Smile, Genetic Algorithm Based Feature Selection]</ref>:
'''import '''smile.classification._
'''import '''smile.data._
'''import '''smile.feature.GAFeatureSelection
'''import '''smile.read
'''import '''smile.validation.Accuracy
 
<span style="color:#3D9970>// Загрузка данных</span>
'''val '''data = read.arff("data/weka/segment-test.arff", 19)
'''val '''(x, y) = data.unzipInt
'''val '''trainer = '''new '''GradientTreeBoost.Trainer(100)
'''val '''measure = '''new '''Accuracy
<span style="color:#3D9970>// Cоздание генетического алгоритма и его настройка.</span>
'''val '''selector = '''new '''GAFeatureSelection
<span style="color:#3D9970>// Размер популяции - 50, количество поколений - 20 </span>
<span style="color:#3D9970>// Каждая возращаемая BitString содержит фичи и их качество.</span>
'''val '''result = selector.learn(50, 20, trainer, measure, x, y, 5)
result.foreach { bits =>
print(100*bits.fitness)
println(bits.bits.mkString(" "))
}
 
==См. также==
*[[Переобучение]]
*[[Метод опорных векторов (SVM)| SVM]]<sup>[на 28.01.19 не создан]</sup>
*[[Дерево решений и случайный лес| Случайный лес]]
*[[Метод главных компонент (PCA)| PCA]]<sup>[на 28.01.19 не создан]</sup>
*[[Стохастическое вложение соседей с t-распределением |t-SNE]]<sup>[на 28.01.19 не создан]</sup>
==Примечания==
<references/>
==Источники информации==
#[http://research.cs.tamu.edu/prism/lectures/pr/pr_l11.pdf Sequential feature selection] {{---}} курс ML Texas A&M University
#[https://en.wikipedia.org/wiki/Feature_selection Feature selection] {{---}} статья про Feature Selection в Wikipedia
#[https://benthamopen.com/FULLTEXT/TOBIOIJ-11-117 Публикация про feature selection]
#[https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f Embedded random forest]
 
[[Категория: Машинное обучение]]
[[Категория: Уменьшение размерности]]
77
правок

Навигация