Условная вероятность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Fix т.к.)
(не показаны 2 промежуточные версии 1 участника)
Строка 15: Строка 15:
 
Пусть имеется <tex>12</tex> шариков, из которых <tex>5</tex> {{---}} чёрные, а <tex>7</tex> {{---}} белые. Пронумеруем чёрные шарики числами от <tex>1</tex> до <tex>5</tex>, а белые {{---}} от <tex>6</tex> до <tex>12</tex>. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
 
Пусть имеется <tex>12</tex> шариков, из которых <tex>5</tex> {{---}} чёрные, а <tex>7</tex> {{---}} белые. Пронумеруем чёрные шарики числами от <tex>1</tex> до <tex>5</tex>, а белые {{---}} от <tex>6</tex> до <tex>12</tex>. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
  
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \dfrac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \dfrac{2}{12} = \dfrac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
+
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \dfrac{1}{2}</tex>, так как ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \dfrac{2}{12} = \dfrac{1}{6}</tex>, так как только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
  
 
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \dfrac{{P}(A\cap B)}{{P}(B)} = \dfrac{1}{3}</tex>
 
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \dfrac{{P}(A\cap B)}{{P}(B)} = \dfrac{1}{3}</tex>
Строка 26: Строка 26:
 
* [[Независимые события]]
 
* [[Независимые события]]
  
== Источники ==
+
== Источники информации ==
*[http://ru.wikipedia.org/wiki/Условная_вероятность http://ru.wikipedia.org/wiki/Условная_вероятность]
+
*[http://ru.wikipedia.org/wiki/Условная_вероятность Википедия {{---}} Условная вероятность]
 
*''Пратусевич М.Я., Столбов К.М., Головин А.Н.'' Алгебра и начала математического анализа, стр. 284.
 
*''Пратусевич М.Я., Столбов К.М., Головин А.Н.'' Алгебра и начала математического анализа, стр. 284.
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Теория вероятности]]
 
[[Категория: Теория вероятности]]

Версия 16:45, 4 марта 2018

Определение:
Условная вероятность (англ. conditional probability): Пусть задано вероятностное пространство [math](\Omega, P)[/math]. Условной вероятностью события [math]A[/math] при условии, что произошло событие [math]B[/math], называется число [math]{P}(A \mid B) = [/math] [math]\dfrac{{P}(A\cap B)}{{P}(B)}[/math], где [math]A, B \subset \Omega[/math].

Замечания

  • Если [math]{P}(B) = 0[/math], то изложенное определение условной вероятности неприменимо.
  • Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
[math]{P}(A\cap B) = {P}(A \mid B) {P}(B)[/math].
  • Если события [math]A[/math] и [math]B[/math] независимые, то [math]{P}(A \mid B) = [/math] [math]\dfrac{{P}(A\cap B)}{{P}(B)} = {P}(A)[/math]

Пример

Пусть имеется [math]12[/math] шариков, из которых [math]5[/math] — чёрные, а [math]7[/math] — белые. Пронумеруем чёрные шарики числами от [math]1[/math] до [math]5[/math], а белые — от [math]6[/math] до [math]12[/math]. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.

Обозначим за [math]A[/math] событие "достали чёрный шар" и за [math]B[/math] событие "достали шар с чётным номером". Тогда [math]P(B) = \dfrac{1}{2}[/math], так как ровно половина шариков имеют чётный номер, а [math]P(A \cap B) = \dfrac{2}{12} = \dfrac{1}{6}[/math], так как только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.

Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна [math]{P}(A \mid B) = \dfrac{{P}(A\cap B)}{{P}(B)} = \dfrac{1}{3}[/math]

См. также

Источники информации