Участник:Dominica — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Решение)
м
 
(не показано 10 промежуточных версий этого же участника)
Строка 1: Строка 1:
 
<tex dpi = "200" >1 \mid\mid \sum w_i U_i</tex>
 
<tex dpi = "200" >1 \mid\mid \sum w_i U_i</tex>
 +
{{Утверждение
 +
|id=krit_dol3
 +
|statement=
 +
Критерии Делоне для ребер и треугольников равносильны.
 +
|proof=
 +
[[Файл:dol3.png|400px|thumb|right|]]
 +
Из треугольника в ребра: если для каждого треугольника выполнен критерий, то для каждого ребра можно рассматривать плоскость при любом треугольнике при ребре.
 +
Обратно: Рассмотрим треугольник <tex>ABC</tex>, для каждого из ребра можно провести плоскость и они образуют трехмерный угол, снаружи которого нет точек. В пересечении угла и плосокости <tex>ABC</tex> образуется тетраэдр. Если в нем есть точки, то точки есть внутри треугольника, тогда это не триангуляция <tex>\implies</tex> точек в тетраэдре нет <tex>\implies</tex> плоскостью <tex>ABC</tex> можно отделить пространство с точками <tex>\implies</tex> выполняется глобальный критерий.
 +
}}
 +
Будем называть '''хорошими''' те рёбра, для которых выполняется локальный критерий Делоне.
 +
{{Лемма
 +
|about=4
 +
|id=fliplemmasphere
 +
|statement=
 +
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
 +
|proof=
 +
}}
  
Для каждой работы заданы время выполнения <tex> p_i,</tex> дедлаин <tex>d_i</tex> и стоимось выполнения этой работы <tex>w_i \geqslant 0</tex>
+
{{nohate2}}
Необходимо сотавить такое расписание, что  <tex>\sum w_i U_i</tex> будет минимальна.
+
{{wasted}}
 +
{{под кат
 +
|title = Заголовок блока
 +
|content = Содержимое
 +
|frame-style = border:1px solid Plum
 +
|title-style = color:black;background-color:lavender;font-weight:bold
 +
|content-style = color:black;background-color:ghostwhite;text-align:center
 +
|footer = См. [[другая статья|другую статью]]
 +
|footer-style = background-color:lightgray;text-align:right
 +
}}
 +
{{Задача
 +
|definition= Есть один станок и <tex>n</tex> работ. Для каждой работы заданы время выполнения <tex> p_i,</tex> дедлаин <tex>d_i</tex> и стоимось выполнения этой работы <tex>w_i \geqslant 0</tex>.
 +
Необходим минимизировать <tex>\sum w_i U_i</tex>.
 +
}}
  
 
==Решение==
 
==Решение==
 
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
 
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/
+
 
Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает <tex>t</tex>.
+
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>.
Если <tex>0 \leqslant t \leqslant  d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>. Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем  <tex> d_j \geqslant \ldots \geqslant d_1 </tex>,  будут выполнены с опозданием.
+
Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции, при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает времени <tex>t</tex>.
 +
#Если <tex>0 \leqslant t \leqslant  d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>.
 +
#Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем  <tex> d_j \geqslant \ldots \geqslant d_1 </tex>,  будут выполнены с опозданием.
 +
 
 
Отсюда, получим соотношение:
 
Отсюда, получим соотношение:
 
<p>
 
<p>
Строка 18: Строка 51:
 
</tex>
 
</tex>
 
</p>
 
</p>
При этом, <tex>F_j(t) = \infty </tex>  при  <tex>t < 0, j = 0,\ldots, n </tex>  и  <tex>F_0(t) = 0 </tex>  при  <tex>t \geqslant 0 </tex>.
+
В качестве начальных условий следует взять <tex>F_j(t) = \infty </tex>  при  <tex>t < 0, j = 0,\ldots, n </tex>  и  <tex>F_0(t) = 0 </tex>  при  <tex>t \geqslant 0 </tex>.
  
 
Ответом на задачу будет <tex>F_n(d_n)</tex>.
 
Ответом на задачу будет <tex>F_n(d_n)</tex>.
Строка 42: Строка 75:
 
Время работы данного алгоритма {{---}} <tex>O(n \sum\limits_{i=1}^n p_i)</tex>.
 
Время работы данного алгоритма {{---}} <tex>O(n \sum\limits_{i=1}^n p_i)</tex>.
  
 +
Для того, чтобы найти само расписание, по доказанной ниже лемме, нам достаточно найти множество работ, которые будут выполнены с опозданием. Это может быть сделано следующим способом:
 
   t = d_n
 
   t = d_n
 
   L = \varnothing
 
   L = \varnothing

Текущая версия на 23:21, 28 ноября 2016

[math]1 \mid\mid \sum w_i U_i[/math]

Утверждение:
Критерии Делоне для ребер и треугольников равносильны.
[math]\triangleright[/math]
Dol3.png

Из треугольника в ребра: если для каждого треугольника выполнен критерий, то для каждого ребра можно рассматривать плоскость при любом треугольнике при ребре.

Обратно: Рассмотрим треугольник [math]ABC[/math], для каждого из ребра можно провести плоскость и они образуют трехмерный угол, снаружи которого нет точек. В пересечении угла и плосокости [math]ABC[/math] образуется тетраэдр. Если в нем есть точки, то точки есть внутри треугольника, тогда это не триангуляция [math]\implies[/math] точек в тетраэдре нет [math]\implies[/math] плоскостью [math]ABC[/math] можно отделить пространство с точками [math]\implies[/math] выполняется глобальный критерий.
[math]\triangleleft[/math]

Будем называть хорошими те рёбра, для которых выполняется локальный критерий Делоне.

Лемма (4):
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
nothumb
НЯ!
Эта статья полна любви и обожания.
Возможно, стоит добавить ещё больше?
nothumb


Задача:
Есть один станок и [math]n[/math] работ. Для каждой работы заданы время выполнения [math] p_i,[/math] дедлаин [math]d_i[/math] и стоимось выполнения этой работы [math]w_i \geqslant 0[/math]. Необходим минимизировать [math]\sum w_i U_i[/math].


Решение[править]

Применим для решения данной задачи динамическое программирование.

Обозначим [math]T = \sum\limits_{i=1}^n p_i[/math]. Для всех [math]t = 0, 1, \ldots, T [/math] и [math]j = 1, \ldots, n[/math] будем рассчитывать [math]F_j(t)[/math] — значение целевой функции, при условии, что были рассмотрены первые [math]j[/math] работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает времени [math]t[/math].

  1. Если [math]0 \leqslant t \leqslant d_j [/math] и работа [math]j[/math] успевает выполниться вовремя в расписании, соответствующем [math]F_j(t)[/math], то [math]F_j(t) = F_{j- 1}(t - p_j)[/math], иначе [math]F_j(t) = F_{j- 1}(t) + w_i[/math].
  2. Если [math]t \gt d_j[/math], то [math]F_j(t) = F_{j}(d_j)[/math], поскольку все работы с номерами [math]j = 1, \ldots, j[/math], законченные позже, чем [math] d_j \geqslant \ldots \geqslant d_1 [/math], будут выполнены с опозданием.

Отсюда, получим соотношение:

[math] F_j(t) = \left \{\begin{array}{ll} \min(F_{j-1}(t-p_j), F_{j-1}(t) + w_j), & 0 \leqslant t \leqslant d_j \\ F_j(d_j), & d_j \lt t \lt T \end{array} \right. [/math]

В качестве начальных условий следует взять [math]F_j(t) = \infty [/math] при [math]t \lt 0, j = 0,\ldots, n [/math] и [math]F_0(t) = 0 [/math] при [math]t \geqslant 0 [/math].

Ответом на задачу будет [math]F_n(d_n)[/math].

Приведенный ниже алгоритм вычисляет [math]F_j(t)[/math] для [math]j = 0,\ldots, n [/math] и [math]t = 0,\ldots, d_j [/math]. За [math]p_{max}[/math] обозначим самое большое из времен выполнения заданий.

 отсортиртировать работы по неубыванию времен дедлайнов [math]d_i[/math]
 [math]t_1[/math] = [math]r_1[/math]
 for [math]t = -p_{max}[/math] to [math]-1[/math]
   for [math]j = 0[/math] to [math]n[/math]
     F_j(t) = \infty
 for [math]t = 0[/math] to [math]T[/math]
   F_0(t) = 0
 for [math]j = 1[/math] to [math]n[/math]
   for [math]t = 0[/math] to [math]d_j[/math]
     if [math] F_{j-1}(t) + w_j  \lt  F_{j-1}(t-p_j) [/math]   
        [math] F_j(t) = F_{j-1}(t) + w_j [/math]
     else
       [math]  F_j(t) = F_{j-1}(t-p_j) [/math]
   for [math]t = d_j + 1[/math] to [math]T[/math]
     [math] F_j(t) = F_{j}(d_j) [/math]

Время работы данного алгоритма — [math]O(n \sum\limits_{i=1}^n p_i)[/math].

Для того, чтобы найти само расписание, по доказанной ниже лемме, нам достаточно найти множество работ, которые будут выполнены с опозданием. Это может быть сделано следующим способом:

 t = d_n
 L = \varnothing
 for [math]j = n[/math] downto [math]1[/math]
   [math]t = \min(t, d_j)[/math]
   if [math] F_j(t) = F_{j-1}(t) + w_j [/math] 
     [math] L = L \cup \{j\} [/math] </tex>
   else
     [math] t = t - p_j [/math]

Доказательство корректности и оптимальности[править]

Лемма:
Пусть все работы отсортированы в порядке неубывания дедлайнов [math]d_i[/math]. Тогда существует оптимальное расписание вида [math]i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n [/math], такое, что [math]i_1 \lt i_2 \lt \ldots \lt i_s [/math] — номера работ, которые успеют выполниться вовремя, а [math]i_{s+1}, \ldots, i_n [/math] — номера просроченных работ.
Доказательство:
[math]\triangleright[/math]

Пусть у нас есть некоторое оптимальное раписание [math]S[/math]. Получим необходимое нам расписание путем переставления некоторых работ.

  1. Если работа с номером [math] i[/math] выполнится в [math]S[/math] с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании [math]S[/math], при такой перестановке не произойдет увеличения целевой функции.
  2. Если работы с номерами [math]i[/math] и [math]j[/math] в расписании [math]S[/math] выполняются вовремя, но при этом [math]d_i \lt d_j [/math], но [math]j[/math] стоит в [math]S[/math] раньше [math]i[/math]. Тогда переставим работу с номером [math]j[/math] так, чтобы она выполнялась после работы [math]i[/math]. Таким образом, каждая из работ, находившихся в [math]S[/math] между [math]j[/math] и [math]i[/math], включая [math]i[/math], будет выполняться в новом расписании на [math]p_j[/math] единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
    • Ни одна из работ, котарая успевала выполниться в расписании [math]S[/math], не попадет в список просроченных работ при переставлении её на более раннее время.
    • Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором [math]S[/math], как оптимального решения.
    • Поскольку [math]d_i \lt d_j [/math] и работа [math]i[/math] будет заканчиваться на [math]p_j[/math] единиц времени раньше, то стоящая сразу послее нее работа [math]j[/math] тоже будет успевать выполниться.
[math]\triangleleft[/math]

См. также[править]

Источники информации[править]

  • P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 26 - 28