Изменения

Перейти к: навигация, поиск

Участник:Iloskutov/Матан 4сем

2796 байт добавлено, 19:14, 12 апреля 2016
Теорема о вычислении интеграла по взвешенному образу меры
{{Определение
|definition=
<tex>\exists U(y_0)</tex> и <tex>\exists g(x)</tex> — суммируемая, что <tex>\forall y \in U(y_0) \quad \forall x : |f(x,y)| < \le g(x)</tex><br>
Тогда <tex>f</tex> удовлетворяет <tex>L_{loc}</tex> в точке <tex>y_0</tex>
}}
Можно вычислить по формулам:
<tex>
a_0 = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \,dx \\
a_k = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \cos kx \,dx \\
b_k = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \sin kx \,dx \\
c_k = \dfrac{1}{2\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \exp(-ikx) \,dx </tex>
}}
<tex>(X, \mathfrak{A}, \mu), f, f_n \colon X \rightarrow \overline{\mathbb{R}}, f_n \rightarrow f </tex> почти везде <br>
<tex>\exists g</tex> - суммируемая и <tex>\forall n |f_n| \leqslant g</tex> для почти всех <tex>x</tex><br>
Тогда <tex>f_n, f</tex> суммируемые и <tex>\displaystyle\int |f-f_n|d\mu \to 0, \int_X f_n \to \int_X f</tex>
|proof=
Легко видеть, что <tex>f, f_n</tex> — суммируемые.<br>
<tex>
h_n := \sup(|f_n - f|, |f_{n+1} - f|, \dotsc) \\
h_n \geqslant h_{n+1} \geqslant \dotsb; \qquad |f_n - f| \leqslant 2g \Rightarrow h_n \leqslant 2g
</tex>
 
Кстати, <tex>\lim h_n = \varlimsup |f_n - f| = 0</tex> при п.в. <tex>x</tex>.
 
Рассмотрим ф-ии <tex>2g - h_n \geqslant 0</tex> — возр.
: <tex>\lim \displaystyle\int_X (2g - h_n) = \int_X \lim(2g - h_n) = 2 \int_X g</tex>
С другой стороны,
: <tex>\lim \displaystyle\int_X (2g - h_n) = \lim\biggl(2 \int_X g - \int_X h_n\biggr) \Rightarrow \int_X h_n \to 0 \Rightarrow \int_X |f_n - f| \leqslant \int_X h_n</tex>
}}
# <tex> y \rightarrow f(x, y)</tex> - непрерывна при всех <tex>x</tex> <br> <tex>f(x, y) \rightarrow f(x, y_0)</tex> при <tex>y \to y_0</tex> при всех <tex>x</tex> <br> Тогда <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex> непрерывна в <tex>y_0</tex>
|proof=
Рассмотрим <tex>f_n(x) = f(x, y_n)</tex>, где <tex>y_n \rightarrow y_0, y_n \in (Y \cap U) \setminus \{a\}</tex>.
Применим теорему Лебега для <tex>f_n</tex>.
}}
# <tex>\forall y \quad x \rightarrow f(x, y)</tex> - суммируема, <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex>
# <tex>\forall y</tex> при всех <tex>x \quad \exists^* f'_y(x, y)</tex>
# <tex>y_0 \in Y \quad f'_y(x, y)</tex> удовлетворяет условию <tex>L_{loc}(y0y_0)</tex><br>Тогда <tex>I'(y_0) = \int\limits_X f'_y(x, y)d\mu(x)</tex>
|proof=
Пусть <tex>x \in X, y_0 + h \in Y, h \not = 0</tex><br>
<tex>F(x, h) = \frac{f(x, y_0 + h) - f(x, y_0)}{h}</tex> <br>
Т.к. <tex>\frac{I(y_0 + h) - I(y_0)}{h} = \int\limits_X \frac{f(x, y_0 + h) - f(x, y_0)}{h} d\mu(x) = \int\limits_X F(x, h) d\mu(x)</tex>, то при <tex>h \rightarrow 0</tex> сразу будет следовать теорема. Для доказательства законности этого перехода докажем, что <tex>F</tex> удовлетворяет <tex>L_{loc}</tex> в <tex>h = 0</tex>:
 
<tex>f'_y</tex> удовлетворяет условию <tex>L_{loc}</tex>, поэтому найдутся такие <tex>\delta</tex> и <tex>g</tex>, что <tex>|f'_y(x, y)| \leq g(x)</tex> при почти всех <tex>x</tex> и при <tex>y \in Y, 0 < |y - y_0| < \delta</tex>.
 
Теорема Лагранжа о среднем применённая к <tex>y \rightarrow f(x, y)</tex> на <tex>(y_0, y_0 + h)</tex> даст <tex>F(x, h) = f'_y(x, y_0 + \theta h)</tex>. Поэтому <tex>F(x, h) \leq g(x)</tex>.
}}
Тогда: <tex>\forall Y_0 \in Y \displaystyle\int\limits_{Y_0} f(y) dv = \int\limits_{\phi^{-1}(Y_0)} f(\phi(x)) \cdot w(x) d\mu(x)</tex>
|proof=
Это очевидно верно, если <tex>f -</tex> характеристическая функция. По линейности интеграла это также верно и для простой неотрицательной <tex>f</tex>.
 
Для произвольной неотрицательной <tex>f</tex> рассмотрим последовательность простых неотрицательных функций <tex>f_n</tex> и по теореме Леви (предельный переход) теорем доказана для неотрицательных <tex>f</tex>.
 
Для отрицательных там надо что-то ещё сделать))))
}}
Анонимный участник

Навигация