Изменения

Перейти к: навигация, поиск

Участник:Masha

3099 байт добавлено, 22:34, 13 июня 2021
Формула Бержа
== Формула Бержа ==
 
{{Определение
|definition =<tex>\mathrm{odd}({G})</tex> {{---}} число нечетных компонент связности в графе <tex>{G}</tex>, где '''нечетная компонента''' (англ. ''odd component'') {{---}} это [[Отношение связности, компоненты связности#def2|компонента связности]], содержащая нечетное число вершин.
}}
 
 
{{Лемма
|statement= <tex>(n + |S| + odd(G \setminus S)) \; \equiv \; 0 \; ( mod \; 2 = 0) \; </tex>, где <tex>G</tex> {{--- }} граф с <tex>n</tex> вершинами, <tex>S \in {V}_{G}</tex>
|proof=
Удалим из графа <tex>G</tex> множество <tex>S</tex>, получим <tex>t</tex> компонент связности, содержащих <tex>k_1, k_2 ... k_t</tex> вершин соответсвенносоответственно.<tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n\; </tex> т. к , так как в сумме это все вершины исходного графа <tex>G</tex>. Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i ) \; mod \; 2)) equiv \; mod \; 2 = n \; (mod \; 2)</tex>В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \equiv \; 2 = n \; (mod \; 2 ) \;</tex>.
}}
|statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex>
|proof=
<tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \equiv \; 2 = n ( mod \; mod 2) \; 2</tex>
1) . Если <tex> \max\limits_{S \in V}(odd(G \setminus S) \; - \; |S|) \; = 0 \; </tex>, тогда для любых <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен критерий , следовательно выполнено условие [[Теорема Татта о существовании полного паросочетания|теоремы Татта]], значит, в графе есть совершенное паросочетание, тто есть его дефицит равен нулю.  2. Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k \; </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, <tex>W</tex> - вершины <tex>K_k</tex>.еКаждую вершину <tex>K_k</tex> соединим с каждой вершиной <tex>G</tex>. Получим граф <tex>H \; = \; K_k + G \;</tex>, докажем, что для него выполнено условие теоремы Татта. Докажем, что для любых <tex>S \in V_{H}: odd(H \setminus S) \; \leq \; |S| \; </tex>. Рассмотрим <tex>S \; \subset \; V_H\;</tex>: * Если <tex>W \not\subset S</tex>, тогда поскольку граф <tex>K_k</tex> полный и все его дефицит равен вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) \; = \; 0 \;</tex> или <tex>odd(G \setminus S) \; = \; 1 \;</tex>. ** В случае <tex>odd(H \setminus S) \; = \; 0 \; </tex> условие очевидно выполняется, так как для любых <tex>S \in G : 0 \; \leq \; |S| \;</tex>. ** Рассмотрим случай <tex>odd(H \setminus S) \; = \; 1 \;</tex>, <tex>|V_H| \; = \; n \; + \; k \; = \; n \; + \; odd(G \setminus A) \; - \; |A| \; </tex>, где <tex>A \; = \; arg \max\limits_{S \in V}(odd(G \setminus S) \; - \; |S|) \; </tex>. Разность <tex>odd(G \setminus A) \; - \; |A| \; </tex> имеет ту же четность, что и <tex>n</tex>, и <tex>odd(H \setminus S) \; = \; 1 \;</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме, мощность <tex>S</tex> нечетна, следовательно она не равна нулю, значит, <tex> 1 \leq |S| </tex>.  
2* Если <tex>W \subset S \;</tex>, то <tex>odd(H \setminus S) \; = \; odd(G \setminus (S \cap V)) \; = odd(G \setminus (S \cap V) Если ) \; - \; |S \cap V| \; + \; |S \cap V| \; \leq \; |S \cap V| \; + \; k \leq |S| \; </tex>, так как <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k \; </tex>. Таким образом, тогда рассмотрим исходный граф для графа <tex>GH</tex> и полный граф выполнено условие теоремы Татта, следовательно в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>K_kH</tex> с , удалим вершины <tex>kW</tex> вершинами, множество вершин нового из графа обозначим как <tex>WH</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>Gk</tex>. Получим новый граф , значит, <tex>H def(G) \; = \leq \; K_k + Gk</tex>, докажем, что для него выполнено условие Татта. Докажем, что Удалим множество вершин <tex>A \; = \forall ; arg \max\limits_{S \in V_{HV}: (odd(G H \setminus S) \; -leq \; |S| ) \; </tex>. Рассмотрим S \from V_H. Если в не из графа <tex>W G\in S;</tex>. Заметим, тогда посколько граф что после удаления в графе осталось <tex>K_kodd(G \setminus A)\; </tex> полный, нечетных компонент и все его образовались новые непокрытые вершины связаны с каждой вершиной графа , но при этом число нечетных компонент больше числа удаленных на <tex>Gk</tex>. Значит, то граф хотя бы <tex>Hk</tex> связный и нечетных компонент содержали исходно непокрытую вершину, следовательно <tex>odddef(G ) \; \setminus S) = 0geq \; k \; </tex> или . Из <tex>odddef(G ) \; \leq \setminus S) = 1; k</tex>. В случае и <tex>odddef(G ) \; \setminus S) = 0geq \; k \; </tex> условие очевидно выполняется т.к следует <tex>\forall S \in def(G : 0 ) \; = \leq ; k \; |S|</tex>. В случае
}}
==См. также==
==Источники информации==
[https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича]
49
правок

Навигация