Редактирование: Участник:Mk17.ru

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 141: Строка 141:
 
*<tex>p_k = \lim_{n\to\infty}P(A) = \lim_{n\to\infty}p_{k0}=\begin{cases} (\frac{q}{p})^k,  &\text{если q меньше p}\\1, &\text{если q≥p}
 
*<tex>p_k = \lim_{n\to\infty}P(A) = \lim_{n\to\infty}p_{k0}=\begin{cases} (\frac{q}{p})^k,  &\text{если q меньше p}\\1, &\text{если q≥p}
 
  \end{cases}</tex>
 
  \end{cases}</tex>
 +
 +
== Условная и взаимная энтропия ==
 +
{{Определение
 +
|definition = '''Условная энтропия''' (англ. ''conditional entropy'') {{---}} определяет количество остающейся энтропии (то есть, остающейся неопределенности) события <tex>A</tex> после того, как становится известным результат события <tex>B</tex>. Она называется ''энтропия <tex>A</tex> при условии <tex>B</tex>'', и обозначается <tex>H(A|B)</tex>
 +
}}
 +
<tex>H(A|B)= - \sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex>
 +
{{Определение
 +
|definition = '''Взаимная энтропия''' (англ. ''joint entropy'') {{---}} энтропия объединения двух событий <tex>A</tex> и <tex>B</tex>. 
 +
}}
 +
<tex> H(A \cap B) = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) </tex>
 +
{{Утверждение
 +
|statement= <tex> H(A \cap B) = H(A|B)+H(B)=H(B|A)+H(A) </tex>
 +
|proof= По формуле условной вероятности <tex dpi="130"> p(a_j|b_i)=\dfrac{p(a_j \cap b_i)}{p(b_i)} </tex>
 +
 +
<tex dpi="140"> H(A|B)=-\sum\limits_{i=1}^{m}p(b_i)\sum\limits_{j=1}^{n} p(a_j|b_i)\log_2p(a_j|b_i) </tex> <tex dpi="140">= - \sum\limits_{i=1}^{m}p(b_i) \sum\limits_{j=1}^{n} \dfrac{p(a_j \cap b_i)}{p(b_i)}\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2 \dfrac {p(a_j \cap b_i)}{p(b_i)} = </tex>
 +
<tex dpi="140"> = -\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(a_j \cap b_i) + \sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) </tex><tex dpi="140">= H(A \cap B) +\sum\limits_{i=1}^{m} \sum\limits_{j=1}^{n} p(a_j \cap b_i)\log_2p(b_i) = </tex>
 +
 +
<tex dpi="140"> = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)\sum\limits_{j=1}^{n} p(a_j \cap b_i) = H(A \cap B) +\sum\limits_{i=1}^{m} \log_2p(b_i)p(b_i) = </tex><tex dpi="140">H(A \cap B) - H(B) </tex>
 +
 +
Таким образом получаем, что: <tex> H(A \cap B)= H(A|B)+H(B) </tex>
 +
 +
Аналогично: <tex>H(B \cap A)= H(B|A)+H(A) </tex>
 +
 +
Из двух полученных равенств следует, что <tex> H(A|B)+H(B)=H(B|A)+H(A) </tex>
 +
}}
  
 
== Источники информации ==
 
== Источники информации ==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: