Редактирование: Участник:Mk17.ru

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 81: Строка 81:
 
*<tex> \quad p_{kn}(t + 1) = p \cdot p_{k+1,n}(t) + q \cdot p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex>
 
*<tex> \quad p_{kn}(t + 1) = p \cdot p_{k+1,n}(t) + q \cdot p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex>
  
Теорему о предельных вероятностях применить не можем, но заметим, что:
+
Заметим, что:
  
<tex> \quad \quad \{\xi_1 = n\} ⊂ \{\xi_2 = n\} ⊂ · · · ⊂ \{\xi_t = n\} ⊂ . . . </tex>  
+
<tex> \quad \quad \{\xi_1 = n\} ⊂ \{\xi_2 = n\} ⊂ · · · ⊂ \{\xi_t = n\} ⊂ . . . </tex> '''Это события? Не очень понятно, что ты имеешь ввиду'''
  
 
Положим <tex>A =\cup_{t=1}^∞\{\xi_t = n\}</tex>. Тогда
 
Положим <tex>A =\cup_{t=1}^∞\{\xi_t = n\}</tex>. Тогда
Строка 100: Строка 100:
 
теории линейных уравнений с постоянными коэффициентами.
 
теории линейных уравнений с постоянными коэффициентами.
  
Пусть сначала <tex>p ≠ q</tex>. Решение будем искать в виде <tex>f_k = \lambda^k</tex>, где <tex>\lambda</tex> является корнем характеристического уравнения <tex>p\lambda^2 − \lambda + q = 0</tex>. Корнями такого уравнения являются <tex>\lambda_1 = 1, \lambda_2 = \frac{q}{p}</tex>.
+
Пусть сначала <tex>p ≠ q</tex>. Решение будем искать в виде <tex>f_k = \lambda^k</tex>, где <tex>\lambda</tex> является корнем характеристического уравнения <tex>p\lambda^2 − \lambda + q = 0</tex>. Корнями такого уравнения являются <tex>\lambda_1 = 1, \lambda_2 = q/p</tex>.
  
 
Значит, функции <tex>\lambda_1^k</tex> и <tex>\lambda_2^k</tex> удовлетворяют уравнению (2.2). Линейная комбинация
 
Значит, функции <tex>\lambda_1^k</tex> и <tex>\lambda_2^k</tex> удовлетворяют уравнению (2.2). Линейная комбинация
Строка 108: Строка 108:
 
при любых <tex>C_1</tex> и <tex>C_2</tex> также является решением. Подставляя граничные условия в (2.3), при <tex>k = 0</tex> и <tex>k = n</tex> получим
 
при любых <tex>C_1</tex> и <tex>C_2</tex> также является решением. Подставляя граничные условия в (2.3), при <tex>k = 0</tex> и <tex>k = n</tex> получим
  
<tex>\quad C_1 + C_2 = 0, \quad C_1 + (\frac{q}{p})^nC_2 = 1.</tex>
+
<tex>\quad C_1 + C_2 = 0, \quad C_1 + (q/p)^nC_2 = 1.</tex>
  
 
Отсюда и из (2.3) находим
 
Отсюда и из (2.3) находим
Строка 121: Строка 121:
 
Так как <tex>p_{k0} + p_{kn} = 1</tex>, то с вероятностью <tex>1</tex> один из игроков выиграет.
 
Так как <tex>p_{k0} + p_{kn} = 1</tex>, то с вероятностью <tex>1</tex> один из игроков выиграет.
  
Пусть теперь <tex>p = q = 0.5</tex>. В этом случае <tex>\lambda_1 = \lambda_2 = 1</tex> и решение уравнения (2.2) нужно искать в виде <tex>f_k = C_1 + kC_2 .</tex>
+
Пусть теперь <tex>p = q = 1/2</tex>. В этом случае <tex>\lambda_1 = \lambda_2 = 1</tex> и решение уравнения (2.2) нужно искать в виде <tex>f_k = C_1 + kC_2 .</tex>
  
 
С помощью граничных условий находим
 
С помощью граничных условий находим
Строка 129: Строка 129:
 
В схеме блуждания по целым точкам с поглощением только в нуле вероятность события
 
В схеме блуждания по целым точкам с поглощением только в нуле вероятность события
  
<tex>\quad A_n = \{\exists t : \quad \xi_t = 0 </tex>, <tex>\quad \forall t: \quad \xi_t ∈ [0, n)\}</tex> равна
+
<tex>\quad A_n = \{\xi_t = 0</tex> в некоторый момент времени <tex>t</tex>, <tex>\xi_t ∈ [0, n)</tex> во все моменты <tex>t\}</tex> '''Лучше не писать текстом в математических объектах и не использовать математические объекты как сокращения в тексте. тут лучше ввести новую переменную и раскрыть её смысл вне системы'''
 +
равна
  
 
<tex> \quad p_{k0} = \begin{cases} \frac{((q/p)^k − (q/p)^n)}{(1 − (q/p)^n)},  &\text{если p≠q}\\1 − k/n, &\text{если p=0.5}
 
<tex> \quad p_{k0} = \begin{cases} \frac{((q/p)^k − (q/p)^n)}{(1 − (q/p)^n)},  &\text{если p≠q}\\1 − k/n, &\text{если p=0.5}

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: