Редактирование: Участник:Mk17.ru

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 33: Строка 33:
 
влево) задаётся формулой:
 
влево) задаётся формулой:
  
*<tex>P = {C_{n}^k} p^k q^{n−k}, \quad k = 0, 1, . . . , n </tex>  
+
*<tex>P = {C_{n}^k} p^k q^{n−k}, \quad k = 0, 1, . . . , n</tex>     (1)
  
 
Смещение частицы и число прыжков влево и вправо связаны уравнением
 
Смещение частицы и число прыжков влево и вправо связаны уравнением
*<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex>  
+
*<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex>       (2) '''(1) и (2) разным шрифтом. И такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи'''
  
 
откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно <tex>n</tex> прыжков,
 
откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно <tex>n</tex> прыжков,
 
число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное
 
число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное
ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли <tex>P = {C_{n}^k} p^k q^{n−k}</tex>:
+
ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1): '''вот тут хочется кликнуть на (1)'''
  
*<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex>
+
*<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex> (3)
  
 
+
Замечание. Ограничение <tex>0 \leq k \leq n </tex> по формуле (2) влечёт <tex>|d| \leq n</tex>. Это
'''Замечания'''.
+
можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за  
+
<tex>n</tex> шагов, даже двигаясь строго в одном направлении
<tex>1)</tex> Ограничение <tex>0 \leq k \leq n </tex> по формуле <tex>d = 1 · k + (−1) · (n − k) = 2k − n</tex> влечёт <tex>|d| \leq n</tex>. Это можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за <tex>n</tex> шагов.  
+
(налево при <tex>d < 0</tex> и направо при <tex>d > 0</tex>). Ограничение на значения <tex>k</tex> согласовано
 
+
и с (3): биномиальный коэффициент <tex>{C_{n}^k}</tex> не определён при <tex> k \notin \{0, 1, . . . , n\}</tex>. Мы
<tex>2)</tex> При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки  
+
можем даже считать формулу (3) верной при любом <tex>k</tex>, если положим по определению<tex>C_{n}^k = 0 </tex> для
 +
<tex> k \notin \{0, 1, . . . , n\}</tex>. Число шагов <tex>n</tex> и смещение <tex>d</tex> должны иметь как
 +
целые числа одну чётность. Вероятность (3) не зависит от начального положения <tex>m</tex> и определяется только числом
 +
шагов <tex>n</tex> (номером члена последовательности)  
 +
и смещением <tex>d</tex>.
 +
При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки  
 
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины  
 
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины  
 
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n +  
 
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n +  
d)}{2}</tex>. Равенство <tex>P = {C_{n}^k} p^k q^{n−k}</tex> при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из  
+
d)}{2}</tex>. Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из  
возможных траекторий, равна  <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким  
+
возможных траекторий, равна  <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким образом, <tex>P = p^k \cdot q^{n−k}+...+p^k \cdot q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex>
образом,  
+
 
*<tex>P = p^k \cdot q^{n−k}+...+p^k \cdot q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex>
+
'''Хотелось бы чуть структурировать, выглядит, как стена текста. Оформить замечание в специальную сноску или в отдельный блок, выделить главное. Сейчас замечание выглядит важнее, чем факт, к которому оно приложено, а это не должно быть так'''
  
 
== Случайные блуждания по прямой ==
 
== Случайные блуждания по прямой ==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: