Редактирование: Участник:Mk17.ru

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 56: Строка 56:
 
образом,  
 
образом,  
 
*<tex>P = p^k \cdot q^{n−k}+...+p^k \cdot q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex>
 
*<tex>P = p^k \cdot q^{n−k}+...+p^k \cdot q^{n−k}={C_{n}^k} p^k q^{n−k}.</tex>
 
== Случайные блуждания по прямой ==
 
 
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки
 
в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex>
 
перемещается в точку <tex>k − 1</tex>.
 
Физической системе соответствует [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D1%86%D0%B5%D0%BF%D1%8C цепь Маркова]:
 
 
*<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p}
 
\end{cases}</tex>
 
Заметим, что вернуться в какую-либо точку можно только за четное число шагов.
 
  
 
== Задача о разорении игрока ==
 
== Задача о разорении игрока ==
Строка 117: Строка 106:
 
*<tex>\quad f_k = C_1λ^k_1 + C_2λ^k_2</tex>  
 
*<tex>\quad f_k = C_1λ^k_1 + C_2λ^k_2</tex>  
  
при любых <tex>C_1</tex> и <tex>C_2</tex> также является решением. Подставляя граничные условия в <tex> f_k = C_1λ^k_1 + C_2λ^k_2</tex>, при <tex>k = 0</tex> и <tex>k = n</tex> получим
+
при любых <tex>C_1</tex> и <tex>C_2</tex> также является решением. Подставляя граничные условия в <tex>\quad f_k = C_1λ^k_1 + C_2λ^k_2</tex>, при <tex>k = 0</tex> и <tex>k = n</tex> получим
  
 
<tex>\quad C_1 + C_2 = 0, \quad C_1 + (\frac{q}{p})^nC_2 = 1.</tex>
 
<tex>\quad C_1 + C_2 = 0, \quad C_1 + (\frac{q}{p})^nC_2 = 1.</tex>
  
Отсюда и из <tex>f_k = C_1λ^k_1 + C_2λ^k_2</tex> находим
+
Отсюда и из <tex>\quad f_k = C_1λ^k_1 + C_2λ^k_2</tex> находим
  
 
*<tex>\quad p_{kn} = \frac{(1 − q/p)^k}{(1 − (q/p)^n)}.</tex>
 
*<tex>\quad p_{kn} = \frac{(1 − q/p)^k}{(1 − (q/p)^n)}.</tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: