Изменения

Перейти к: навигация, поиск

Участник:Mk17.ru

435 байт убрано, 21:00, 2 июня 2020
Задача о разорении игрока
{{Определение
|definition = '''Случайное блуждание''' (англ. ''Random walk'') {{---}} математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом , предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. '''Соедини в одно предложение, переформулируй''' В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса.
}}
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки
в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку <tex>k + 1</tex> и с положительной вероятностью <tex>q = 1 − p</tex>
перемещается в точку <tex>k − 1</tex>. '''Тех'''Физической системе соответствует [https://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F_%D1%86%D0%B5%D0%BF%D1%8C цепь Маркова]: '''лучше сделать тут кликабельным'''
*<tex>\xi_n = \xi_{n-1} + \eta_n = \xi_0 + S_n, \eta_n = \begin{cases} 1 &\text{с вероятностью p}\\-1 &\text{с вероятностью 1 - p}
==Вероятность смещения на d единиц вправо (влево)==
Выведем распределение случайной величины <tex>\xi_n</tex>. '''Кажется, это предложение можно выкинуть и ничего не изменится''' Будем считать, что <tex>P(\xi_0 = m) = 1</tex>. Это отвечает соответствует тому, '''переформулируй, пожалуйста, не очень корректный оборот''' что в начальный момент времени частица достоверно '''лишнее слово''' находилась в точке
<tex>x = m</tex> (здесь <tex>m</tex> — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть <tex>d</tex> — смещение частицы за <tex>n</tex> шагов.
Найдём <tex>P(\xi_n = m + d)</tex> для каждого <tex>d ∈ Z</tex>.
Наша физическая модель с математической точки зрения в точности отвечает
схеме [https://neerc.ifmo.ru/wiki/index.php?title=%D0%A1%D1%85%D0%B5%D0%BC%D0%B0_%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8#:~:text=%D0%A1%D1%85%D0%B5%D0%BC%D0%BE%D0%B9%20%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8%20(%D0%B0%D0%BD%D0%B3%D0%BB.,%2C%20%D0%B0%20%D0%BD%D0%B5%D1%83%D0%B4%D0%B0%D1%87%D0%B0%20%E2%80%94%20%D1%81%20%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C%D1%8E%20 независимых испытаний Бернулли '''лучше сделать ссылку на конспекты, если в них это есть, или хотя бы на Википедию''' ] с двумя исходами —- прыжком движением вправо, который мы будем называть успехом, и прыжком '''лишнее определение, можно писать "перемещение" или "движение"''' движением вправо (неудачей). В рамках этой
математической модели все вероятности рассчитываются на основании распределения Бернулли. '''Лишнее предложение''' Пусть частица сделала <tex>n</tex> прыжков. Вероятность того, что среди
этих прыжков будет ровно <tex>k</tex> прыжков вправо (или, что то же самое, <tex>n−k</tex> прыжков
Замечание. Ограничение <tex>0 \leq k \leq n </tex> по формуле (2) влечёт <tex>|d| \leq n</tex>. Это
можно понять и без расчётов: если <tex>|d| > n</tex>, то частица «не успевает» '''в научных текстах не должно быть ненаучных выражений в кавычках''' успевает дойти из начальной в конечную точку за
<tex>n</tex> шагов, даже двигаясь строго в одном направлении
(налево при <tex>d < 0</tex> и направо при <tex>d > 0</tex>). Ограничение на значения <tex>k</tex> согласовано
шагов <tex>n</tex> (номером члена последовательности)
и смещением <tex>d</tex>.
При своём движении частица случайным образом «выбирает» '''то же самое''' выбирает одну из возможных траекторий. Для перехода из точки
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n +
или
*<tex> \quad p_{kn}(t + 1) = p*\cdot p_{k+1,n}(t) + q*\cdot p_{k−1,n}(t), \quad k = 1, 2, . . . , n − 1.</tex> '''в формулах следует писать не *, а \cdot'''
Заметим, что:
Переходя к пределу в (2.1) при <tex>t → ∞</tex>, получим
<tex>\quad \quad p_{kn} = p*\cdot p_{k+1,n} + q*\cdot p_{k−1,n}</tex>
Так как <tex>p_{kn}</tex> вероятность выигрыша для первого игрока, то <tex>p_{0n} = 0, p_{nn} = 1</tex>. Рассматриваемая как функция от <tex>k</tex>, вероятность <tex>p_{kn}</tex> является решением уравнения в конечных разностях
*<tex> \quad \quad p*\cdot f_{k+1} − f_{k} + q*\cdot f_{k−1} = 0 </tex> (2.2)
удовлетворяющим граничным условиям <tex>f_0 = 0 \quad f_n = 1</tex>. Теория решения таких уравнений аналогична
Отсюда и из (2.3) находим
*<tex>\quad p_{kn} = \frac{(1 − q/p)^k/}{(1 − (q/p)^n)}.</tex> '''Оформи дроби через \frac'''
Вероятности выигрыша первым игроком <tex>p_{k0}</tex> тоже удовлетворяют уравнению (2.2). Но граничными
условиями станут <tex>f_0 = 1, f_n = 0.</tex> Определяя из этих условий <tex>C_1</tex> и <tex>C_2</tex>, получим
<tex>\quad p_{k0} = \frac{((q/p)^k − (q/p)^n)/}{(1 − (q/p)^n)}.</tex>
Так как <tex>p_{k0} + p_{kn} = 1</tex>, то с вероятностью <tex>1</tex> один из игроков выиграет.
Анонимный участник

Навигация