Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан

3 байта добавлено, 21:42, 25 июня 2014
Правило Лопиталя для неопределенностей вида 0/0
<tex>g'(t) \ne 0</tex> для любого <tex>t \in (a, b)</tex>,
<tex>\underset {x \to a+}{\lim} f(x) = \underset{x \to a+}{\lim} g(x) = 0</tex>
и существует предел <tex>\underset{x \to a+}{\lim} {{f'(x)} \over {g'(x)}} = A \in \overline{\mathbb{R}}</tex>.
Тогда предел <tex>\underset{x \to a+}{\lim} {{f(x)} \over {g(x)}}</tex> также существует и равен ''A''.
|proof=1. Пусть <tex>a \in \mathbb{R}</tex>. Доопределим функции в точке ''a'' нулём: <tex>f(a) = g(a) = 0</tex>. Тогда доопределенные функции ''f'' и ''g'' будут непрерывны на ''[a, b)''. Возьмем последовательность <tex>\{ x_n \} : x_n \in (a, b), x_n \to a</tex>, и докажем, что <tex>{{f(x_n)} \over {g(x_n)}} \to A</tex>. Функции ''f'' и ''g'' удовлетворяют условиям теоремы Коши на каждом отрезке <tex>[a, x_n]</tex>. Поэтому для любого <tex>n \in \mathbb{N}</tex> найдется такая точка <tex>c_n \in (a, x_n)</tex>, что
Анонимный участник

Навигация