Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан3сем

22 911 байт убрано, 14:50, 29 января 2015
Полиномиальная формула
== Основные вопросы ==
=== Список теорем ===
==== Теоремы без доказательств ====
[[Участник:Yulya3102/Матан3сем#Признак Дирихле равномерной сходимости функционального ряда|Признак Дирихле равномерной сходимости функционального ряда]]
 
[[Участник:Yulya3102/Матан3сем#Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)|Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)]] — уже есть все идеи доказательства, осталось его выписать, если кому-то не лень.
 
[[Участник:Yulya3102/Матан3сем#Теорема о неявном отображении|Теорема о неявном отображении]] Доказательство появилось
 
Асимптотика интеграла <tex>\int_0^{\pi/2}\cos^nx\,dx, n\to+\infty</tex> — много писать =(
 
[[Участник:Yulya3102/Матан3сем#Метод Лапласа вычисления асимптотики интегралов|Метод Лапласа вычисления асимптотики интегралов]] — много писать =(
=== Признак Вейерштрасса ===
из 1) и 2) <tex> \Rightarrow S(x) </tex> непрерывна в <tex> (\cdot) x_0 </tex>
 
Где вы вообще такое доказательство нашли? Тут фигня какая-та. Нормальное доказательство есть в Фихтенгольце.
}}
Пусть есть ряд <tex> \sum a_n(x) b_n(x) </tex>, <tex> x \in X </tex>
1) частичные суммы ряда <tex>a_n(x)</tex> равномерно ограничены, т.е. <tex> \exists c_a \ \forall x | \sum_{k = 1}^{n} a_k(x) | \leqslant c_a </tex>
2) <tex> b_n(x) </tex> монотонна по <tex> n </tex> и равномерно сходится к <tex> 0 </tex>
Тогда <tex> \sum a_n(x) b_n(x) </tex> равномерно сходится на <tex> X </tex>.
 
|proof=
Применяя преобразование Абеля
 
<tex>\sum_{k=n+1}^{n+p}b_k(x)a_k(x) = b_{n+p}(x)\sum_{k = 1}^{n + p}a_k(x)-\sum_{k=n+1}^{n+p-1}(b_{k+1}(x)-b_k(x))\sum_{j=1}^{k}a_j(x)</tex>
 
В силу равномерной ограниченности частичных сумм ряда <tex>\sum a_k(x)</tex> при некотором <tex>M</tex>
 
<tex>|\sum_{k = 1}^{n}a_k(x)| \le M \ \forall n \in N, \forall x \in X</tex>
 
Тогда, используя монотонность <tex>b_k(x)</tex> (по <tex>k</tex>), имеем
 
<tex>|\sum_{k=n+1}^{n+p}b_k(x)a_k(x)| \le M|b_{n+p}(x)|+M \sum_{k = n + 1}^{n+p-1}|b_{k+1}(x)-b_k(x)|= 2M|b_{n+p}(x)|+M|b_{n+1}(x)|</tex>
 
Из этого неравенства в силу <tex>b_k \rightrightarrows 0</tex> получаем, что
 
<tex>\forall \varepsilon > 0 \ \exists n(\varepsilon ) :
|\sum_{k=n+1}^{n+p}b_k(x)a_k(x)| < \varepsilon \ \forall n \ge n(\varepsilon), \forall p \in N, \forall x \in X</tex>
 
Применяя критерий Коши, получаем, что ряд сходится равномерно на <tex>X</tex>.
}}
[Тогда <tex>f</tex> — дифф. при <tex> |z - z_0| < r </tex> и <tex> f'(z) = \sum n a_n (z - z_0)^{n - 1} </tex> ]
|proof=
<tex>R = \frac{1}{\overline{\lim}\sqrt[n]{|a_n|}}; R_A = \frac{1}{\overline{\lim}\sqrt[n]{(n + 1)|a_{n + 1}|}} = R</tex>
<tex> \frac{f(z + h) - f(z)}{h} = \sum \frac{a_n (z + h - z_0)^n - a_n (z - z0)^n }{h} = \sum a_n \frac{(z + h - z_0) - (z - z_0)^n}{h} </tex>
<tex> \sum h|a_n|r^{n - 1} </tex> — сх. <tex>\Rightarrow</tex> по [[Участник:Yulya3102/Матан3сем#Признак Вейерштрасса|признаку Вейерштрасса]] р. сх. при <tex> |h| < r - |z - z_0| </tex>
<tex> f(z) = \lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h} = \sum \lim a_n \frac{(z + h - z_0)^n - (z - z_0)^n}{h} = \sum n(z - z_0)^{n - 1} a_n </tex>
}}
Замечание: Для <tex> F : E \rightarrow \mathbb{R}^l </tex> — дифференцируемо в точке <tex> a </tex>; <tex>F'(a) = ({\partial f_i\over\partial x_j})_{i = 1 \ldots l; j = 1 \ldots m} </tex>
|proof=
<tex>f(a + h) = f(a) = + f'(a) \cdot h + o(h)</tex>
<tex> h := (0, \ldots, 0, t, 0, \ldots, 0) </tex>
<tex> (\lambda f_i)'(a)h = (\lambda'(a)(h))f_i(a) + \lambda(a)(f'_i(a)h) </tex> — <tex>i</tex>-ая коорд. док. ф-лы; <tex> ]f_i \leftrightarrow f </tex>
<tex> \lambda(a + h)f(a + h) - \lambda(a)f(a) = (\lambda(a + h) - \lambda(a))f(a + h) + \lambda(a)(f(a + bh) - f(a)) =
(\lambda'(a)h + o(h))f(a + h) + \lambda(a)(f'(a)h + o(h)) = </tex>
<tex> (a_1 + ... + a_m)^{r + 1} = (a_1 + ... + a_m) \cdot \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_m^{k_{m}} = </tex>
<tex> = \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}+1} ... a_m^{k_{m}} + \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} a_2^{k_2 + 1} ... a_m^{k_{m}} + </tex><tex> \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_{m-1}^{k_{m - 1}} a_m^{k_{m } + 1}} = </tex>
<tex> = \sum_{\beta : |\beta| = r + 1; \beta_1 \ge 1} \frac{r! \beta_1}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + \sum_{\beta : |\beta| = r + 1; \beta_2 \ge 1} \frac{r! \beta_2}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + </tex> <ещё <tex> m - k </tex> суммы> = <tex> \sum_{|b| = r + 1} \frac{r! (b_1 + ... + b_m)}{b_1! ... b_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} </tex>;
{{Теорема
|statement=
Пусть <tex> r \in \mathbb{N} </tex>, <tex> D </tex> открыто в <tex> \mathbb{R}^n </tex>, <tex> f \in C^{(r+ 1)} (D), \ x \in D </tex>. Тогда <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + o(|h|^r), \ h \to \mathbb{O}_n </tex>.
}}
{{Теорема
|statement=
Пусть <tex> F: O \subset \mathbb{R}^m \to \mathbb{R}^m, \ F \in C^r(O) </tex>, <tex> F </tex> — обратима и её производная невырождена, <tex> (\forall x \in O \ \det(F'(x))) \neq 0 </tex>.
Тогда:
<tex> f'_y </tex> — непрерывна на <tex> [a, b] \times [c, d] </tex>
<tex> \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y : |x - y| < \delta; \ |f_yf'_y(x) - f_yf'_y(y)| < \epsilon </tex> — равномерная непрерывность
<tex> | \frac{\Phi(y + h) - \Phi(y)}{h} - \int_a^b f'_y(x, y)dx | = | \int_a^b f'_y(x, y + \Theta h) - f'_y(x, y)dx | \le </tex>
{{Лемма
|statement=
Пусть <tex> O \subset \mathbb{R}^m </tex> — выпуклаявыпуклое, <tex> V </tex> — векторное поле в <tex> O </tex>, гладкое и <tex> \forall x \forall i, j \ \frac{\partial V_i}{\partial x_j} = \frac{\partial V_j}{\partial x_i} </tex>. Тогда <tex> V </tex> — потенциальное.
|proof=
фиксируем <tex> A \in O; \ \gamma [0, 1] \to O; \ t \mapsto A + t * (x - A); \ \gamma' = x - A </tex>
<tex> \forall c \in [a, b] </tex> — выберем шар <tex> B(\gamma(c), V_c) \subset O </tex>
<tex> \tilde \alpha_c := \inf \{ \alpha \in [a, b]; \ \gamma([\alpha, c]) \subset B; \ (\gamma(c), V_c) \} </tex>
<tex> \tilde \beta_c := \sup \{ \beta \in [a, b]; \ \gamma([c, \beta]) \subset B; \ (\gamma(c), V_c) \} </tex>
Пусть <tex> \tilde \alpha_c < \alpha_c < c < \beta_c < \tilde \beta_c </tex>
<tex> \forall c </tex> мы имеем <tex> (\alpha_c, \beta_c) </tex> — открытое покрытие <tex> [a, b] </tex> и <tex> \exists </tex> конечное подпокрытие
Можно считать <tex> \forall i \ \exists S_i s_i </tex> — которое лежит в <tex> (\alpha_{c_i}, \beta_{c_i}) </tex>, но не лежит в <tex> (\alpha_{c_j}, \beta_{c_j}); \ i \ne j </tex>
<tex> S_1 \subset S_2 s_1 < s_2 ... \subset S_n < s_n </tex>
}}
Пусть <tex> V </tex> — локально-потенциальное векторное поле в <tex> O </tex>, <tex> \gamma_0, \gamma_1: [a; b] \to O </tex> — связанно гомотопны. Тогда <tex> \int\limits_{\gamma_0} \sum V_i dx_i = \int\limits_{\gamma_1} \sum V_i dx_i </tex>. Тоже верно для петельной гомотопии.
|proof=
<tex> \Gamma </tex> — гомотопнагомотопия. <tex> \gamma_u(t) = \Gamma(t, u), \ u \in [0, 1] </tex>
<tex> \Phi(u) = \int_{\gamma_u} \sum V_i dx_i </tex>. Проверим, что <tex> \Phi </tex> — локальная постоянная
{{Теорема
|statement=
<tex> \int\limits_0^{\pi/2} \cos^n x dx \underset{n \to + \infty}{\sim} \sqrt{\frac{2}{n}} \int\limits_0^{+\inf} e^{-t^2} dt </tex>|proof=  Доказательство в три шага, полностью выписывать много, поэтому здесь только идеи: 1) <tex>\int\limits_0^{\pi/2} \cos^n x dx \piunderset{n \to + \infty}{\sim} \int\limits_0^{n^{-\frac{1}{3}}} \cos^{4n}x dx</3tex> Доказывается заменой <tex>\cos^n{x} = e^{n\ln{\cos{x}}}</tex> и каким-то подбором нового предела интегрирования, зависящего от n (конспект, стр.143) 2) Доказываем, что x — точка максимума для <tex>\ln{\cos{x}} </tex>, вместе с этим заменяем по формуле Тейлора <tex>n\ln{\cos{x}}</tex> на <tex>-\frac{nx^2}{2}+o(x^2)</tex> и показываем, что это <tex>o(x^2)</tex> не мешает подставить замену в интеграл. 3) Делаем замену <tex>t=\sqrt{\frac{n }{2}}x , dx = \sqrt{\frac{2}{n}}dt</tex>, получаем интеграл из условия. 
}}
=== Метод Лапласа вычисления асимптотики интегралов ===
 
{{Теорема
|statement=
Пусть <tex> f > 0 </tex> на <tex> (a; b) </tex>, непрерывна, <tex> \int\limits_a^b f = M, \ f(t) \sim L(t - a)^q, \ t \to a, \ q > -1, \ L > 0, \ \varphi </tex> непрерывна, строго убывает, <tex> \varphi(a) - \varphi(t) \sim c(t - a)^p, \ p > 0 </tex>. Тогда <tex> \int\limits_a^b f(xt) e^{A \varphi(t)} dt \underset{A \to + \infty}{\sim} e^{A \varphi(xa)} \cdot \frac{1}{p} \cdot \frac{1}{(cA)^{\frac{q + 1}{p}}} \cdot \Gamma(\frac{q + 1}{p}) </tex>.}}
|proof= * В доказательстве используется прием: при <tex>q > 1, p > 0, A > 0, s > 0</tex> в интеграле <tex>\int\limits_0^s t^q e^{-At^p} dt</tex>  * вводим замену <tex>u = At^p, t = (\frac{u}{A})^{1/p}, dt = \frac{u^{1/p-1}}{pA^{1/p}}</tex>. * Тогда он превращается в <tex>\frac{1}{pA^{\frac{q+1}{p}}} \int\limits_0^{As^p} u^{\frac{q+1}{p} - 1}e^{-u}du</tex>, который при <tex>A\to{+\infty}</tex> стремится к <tex>\frac{1}{pA^{\frac{q+1}{p}}}\Gamma({\frac{q+1}{p}})</tex> '''Утверждения:''' 1) <tex>\forall{c\in(a, b)}\ \forall{\varepsilon > 0}\ \exists{A_0}\ \forall{A > A_0}\ \int\limits_a^c{fe^{A\varphi}} \le \int\limits_a^b{fe^{A\varphi}} \le (1 + \varepsilon)\int\limits_a^c{fe^{A\varphi}}</tex> (следствие из теоремы о локализации) 2) <tex>\forall{\varepsilon > 0}\ \exists{A_0}\ \forall{A > A_0}</tex> <tex>(1-\varepsilon)\frac{1}{pA^{\frac{q+1}{p}}}\Gamma(\frac{q+1}{p}) \le \int\limits_0^s t^q e^{-At^p} dt \le \frac{1}{pA^{\frac{q+1}{p}}}\Gamma(\frac{q+1}{p})</tex> (следствие из приема выше. Да, читается ужасно) '''Доказательство''' Выбираем окрестность точки <tex>a: [a; a+s]</tex> и <tex>\varepsilon</tex> такое, что  <tex>1-\varepsilon < \frac{f(t)}{L(t-a)^q} < 1+\varepsilon</tex> <tex>1-\varepsilon < \frac{\varphi(a) - \varphi(t)}{c(t-a)^p} < 1+\varepsilon</tex> Для <tex>A > A_0</tex>, удовлетворяющих двум утверждениям выше, выполняется: <tex>\int\limits_a^b f(t)e^{A\varphi(t)} dt \le (1+\varepsilon)\int\limits_a^{a+s}L(t-a)^q \cdot e^{A\varphi(a)} \cdot e^{-A(\varphi(a)-\varphi(t)} dt \le</tex> <tex>\le (1+\varepsilon)Le^{A\varphi(a)}\int\limits_0^s{\tau^q}e^{-Ae^{c(1-\varepsilon)\tau^p}}d\tau</tex> По утверждению 2 это меньше или равно <tex>\frac{1+\varepsilon}{(1-\varepsilon)^{\frac{q+1}{p}}}\cdot L\cdot [e^{A \varphi(a)} \frac{1}{p(cA)^{\frac{q + 1}{p}}} \Gamma(\frac{q + 1}{p})]</tex>. В квадратных скобках то, что нам нужно. Используя другие части неравенства, находим, что <tex>\int\limits_a^b f(t)e^{A\varphi(t)} dt \ge \frac{1-\varepsilon}{(1+\varepsilon)^{\frac{q+1}{p}}}\cdot L\cdot [e^{A \varphi(a)} \frac{1}{p(cA)^{\frac{q + 1}{p}}} \Gamma(\frac{q + 1}{p})]</tex>. Вроде доказали. }} === Теорема Вейерштрасса о приближении функций многочленами ==={{Теорема|statement=Пусть <tex> f </tex> непрерывна на <tex> [a; b] </tex>. Тогда существует многочлен (последовательность многочленов?) <tex> P_n(x), \ n = 1, 2 ... </tex>, что <tex> \forall x \in [a; b] \ P_n(x) \to f(x) </tex>.
|proof=
<tex> [a, b] \subset [a - 1, b + 1] = [a_1, b_1] </tex> // Можно считать <tex> \begin{matrix} [a, b] = [\frac{1}{3}, \frac{2}{3}] \\ [a_1, b_1] = [0, 1] \end{matrix} </tex>
<tex> \Gamma(x + 1) = \int_0^{+\infty} t^x e^{-t} dt =_{t = ux; \ dt = xdu} \ </tex><tex>\ x^{x + 1} \int_0^{+\infty} u^x e^{-ux} du = x^{x + 1} \int_0^{+\infty} e^{-x(u - \ln u)} du \sim </tex>
// <tex> \varphi(u) = -(n u - \ln u) </tex>
// <tex> \varphi' = -(1 - \frac{1}{nu}); n u = 1; \varphi'(u) = 0 - (\cdot) max </tex>
// <tex> \varphi'' = -\frac{1}{nu^2}; \ \varphi''(1) = -1 </tex>
<tex> \sim x^{x + 1} e^{-x} \sqrt{\frac{2\pi}{x}} \cdot \frac{1}{\sqrt{1}} \cdot 1 </tex>
}}
<tex> \int_{\gamma} \sum V_i dx_i = \int_{\gamma_1} \sum V_i dx_i</tex>
== Определения и факты ==
=== Равномерно сходящийся ряд ==={{Определение|definition=Последовательность функций <tex> f_1(x), f_2(x), ... , f_n(x) </tex> называется равномерно сходящейся на множестве <tex> X </tex>, если существует предельная функция <tex> f(x) = \lim_{n \to \infty} f_n(x) \ (x \in X ) </tex> и для любого числа <tex> \varepsilon > 0 </tex> можно указать число <tex> N = N(\varepsilon) </tex> такое, что <tex> |f(x) - f_n(x) | < \varepsilon </tex> при <tex> n > N </tex> и <tex> x \in X </tex>. В этом случае пишут <tex> f_n(x) \rightrightarrows f(x) </tex>. Функциональный ряд называется равномерно сходящимся на множестве <tex> X </tex>, если равномерно сходится на этом множестве последовательность его частичных сумм.}} === Признак Абеля равномерной сходимости ==={{Теорема|statement=Рассмотрим ряд <tex> \sum a_n(x) b_n(x) </tex>, <tex> x \in X </tex>: 1) <tex> \sum a_n(x) </tex> равномерно сходится, <tex> x \in X </tex> 2) <tex> b_n(x) </tex> равномерно ограничена и монотонна по <tex> n </tex> Тогда <tex> \sum a_n(x) b_n(x) </tex> равномерно сходится на <tex> X </tex>.}} === Радиус сходимости степенного ряда ===см. [[Участник:Yulya3102/Матан3сем#Теорема о круге сходимости степенного ряда|Теорема о круге сходимости степенного ряда]] пункт 3. === Формула Адамара ==={{Определение|definition=Число <tex> R </tex> — радиус сходимости.<tex> R = \frac{1}{\overline{lim}\sqrt[n]{a_n}} </tex>}} === Комплексная производная ==={{Определение|definition=Пусть <tex> f: \mathbb{C} \to \mathbb{C}, \ z_0 \in \mathbb{C} </tex>. Тогда <tex> f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} </tex>.}} === Экспонента, синус и косинус комплексной переменной ==={{Определение|definition=<tex> \mathrm{exp}(z) := \sum_{n=0}^{+ \infty} \frac{z^n}{n!} </tex> <tex> \sin(z) := \mathrm{Im}(\mathrm{exp}(iz)) </tex> <tex> \cos(z) := \mathrm{Re}(\mathrm{exp}(iz)) </tex>}} === Отображение, бесконечно малое в точке ==={{Определение|definition=Пусть <tex> \varphi: \ E \in \mathbb{R}^m \to \mathbb{R}^l </tex>, <tex> a \in E </tex>. <tex> \varphi </tex> — бесконечно малое при <tex> x \to a </tex>, если <tex> \lim \varphi(x) = \mathbb{O}_l </tex>. (<tex> \mathbb{O}_l </tex> — <tex> l </tex>-мерный ноль)}} === o(h) при h->0 ==={{Определение|definition=Пусть <tex> \varphi: \ \mathbb{R}^m \to \mathbb{R}^l </tex>. <tex> \varphi(h) = o(h) </tex> при <tex> h \to 0 </tex>, если <tex> \frac{\varphi(h)}{||h|Определения|} </tex> — бесконечно малая при <tex> h \to 0 </tex>.}} === Дифференцируемое отображение ==={{Определение|definition=Пусть <tex>f:D\subset\mathbb{R}^n\to\mathbb{R}^m,x\in\operatorname{Int}D</tex> (<tex>\operatorname{Int} D</tex> — множество внутренних точек (внутренность) множества D). Если существует такой линейный оператор <tex>A\in\mathcal{L}(\mathbb{R}^n\to\mathbb{R}^m)</tex> (<tex>\mathcal{L}(X\to Y)</tex> — множество линейных ограниченных операторов из <tex>X</tex> в <tex>Y</tex>), что <tex>f(x+h)=f(x)+Ah+o(h), h\to\mathbb{O}_n</tex>, то отображение <tex>f</tex> называется '''дифференцируемым''' в точке <tex>x</tex>. При этом оператор <tex>A</tex> называется '''производным оператором''', '''производным отображением''' или, короче, '''производной''' отображения <tex>f</tex> в точке <tex>x</tex> и обозначается <tex>f'(x)</tex>.}} === Производный оператор ==={{Определение|definition=Оператор <tex> A </tex> из определения производной называется производным оператором отображения <tex> f </tex> в точке <tex> x </tex>.}} === Дифференциал отображения ==={{Определение|definition=Величина <tex>f'(x)h</tex> называется '''дифференциалом''' отображения <tex>f</tex> в точке <tex>x</tex>, соответствующим приращению <tex>h</tex>, и обозначается <tex>df(x,h)</tex> или <tex>d_x f(h)</tex>.}} === Матрица Якоби ==={{Определение|definition=Пусть отображение <tex>f:D\subset\mathbb{R}^n\to\mathbb{R}^m</tex> дифференцируемо в точке <tex>x\in\operatorname{Int} D</tex>. Матрица оператора <tex>f'(x)</tex> называется '''матрицей Якоби''' отображения <tex>f</tex> в точке <tex>x</tex>.}} === Частные производные ==={{Определение|definition=Пусть <tex> f: D \subset \mathbb{R}^n \to \mathbb{R}, \ x \in \operatorname{Int} D, \ k \in [1 : n] </tex>. Производная <tex> \frac{\partial f}{\partial e^k} (x) </tex> (где <tex> e^k </tex> — это орт (т.е. единичный вектор — вектор, норма которого равна 1)) называется частной производной функции <tex> f </tex> по <tex> k </tex>-ой переменной в точке <tex> x </tex> и обозначается ещё <tex> D_k f(x), \ D_{x_k} f(x), \ f'_{x_k} (x), \ \frac{\partial f}{\partial x_k} (x) </tex>.}} === Производная по вектору, по направлению ==={{Определение|definition=Пусть <tex> f: D \subset \mathbb{R}^n \to \mathbb{R} </tex>, <tex> x \in Int(D) </tex>, <tex> h \in \mathbb{R}^n </tex>. Предел <tex> \lim_{t \to 0} \frac{f(x + th) - f(x)}{t} </tex> называется производной функции <tex> f </tex> по вектору <tex> h </tex> в точке <tex> x </tex> и обозначается <tex> D_h f(x) </tex> или <tex> \frac{\partial f}{\partial h}(x) </tex>. Если <tex> |h| = 1 </tex>, то вектор <tex> h </tex> называется направлениемПеремещено, а производная по нему — производной по направлению <tex> h </tex>.}} === Градиент ==={{Определение|definition=Пусть <tex>f:D\subset\mathbb{R}^n\to\mathbb{R},x\in\operatorname{Int}D</tex>. Если существует такой вектор <tex>a\in\mathbb{R}^n</tex>, что <tex>f(x+h)=f(x)+\langle a,h\rangle+o(h),h\to\mathbb{O}_n</tex>, то функция <tex>f</tex> называется '''дифференцируемой''' в точке <tex>x</tex>. Вектор-строка <tex>a</tex> называется '''градиентом''' функции <tex>f</tex> в точке <tex>x</tex> и обозначается <tex>\operatorname{grad} f(x)</tex> или <tex>\nabla f(x)</tex>. Символ <tex>\nabla</tex> называется '''символом''' или '''оператором Гамильтона''' или '''оператором Набла'''.}} === Частная производная второго порядка, k-го порядка ==={{Определение|definition=Предположим, что <tex> r - a \in \mathbb{R} </tex> и частные производные порядка <tex> r - 1 </tex> уже определены. Пусть <tex> i_1, ... , i_r \in [1 : n], \ f : D \subset \mathbb{R}^n \to \mathbb{R}, \ x \in D </tex>. Частная производная функции <tex> f </tex> порядка <tex> r </tex> по переменным с номерами <tex> i_1, ..., i_r </tex> в точке <tex> x </tex> определяется равенством <tex> D_{i_1, ..., i_r}^r f(x) = D_{i_r} (D_{i_1, ..., i_{r - 1}}^{r-1} f)(x) </tex>, если правая часть существует.}} === Классы функций $C^k(E)$ ==={{Определение|definition=Множество функций, <tex> r </tex> раз непрерывно дифференцируемых на открытом подмножестве <tex> D </tex> пространства <tex> \mathbb{R}^n </tex>, обозначается <tex> C^{(r)} (D) </tex> или <tex> C^r (D) </tex>. По определению <tex> C^0 (D) = C(D) </tex> — класс непрерывных на <tex> D </tex> функций. Через <tex> C^{(\infty)} (D) </tex> обозначается класс бесконечно дифференцируемых на <tex> D </tex> функций.}} === Мультииндекс и обозначения с ним ==={{Определение|definition=Вектор <tex> k \in \mathbb{Z}_+^n </tex> называют мультииндексом. Величину <tex> (k) = k_1 + ... + k_n </tex> называют высотой мультииндекса <tex> k </tex>.}}Если <tex> k = (k_1, .., k_n) </tex> — мультииндекс, <tex> (k) \leqslant r </tex>, то частную производную порядка <tex> k </tex> (порядком частной производной называют как сам мультииндекс, так и его высоту) функций класса <tex> C^{(r)} </tex> обозначают <tex> D^k f, \ f^{(k_1, ..., k_n)}, \ f^{(k)} </tex>. Также полагают <tex> k! = k_1 ! \cdot ... \cdot k_n ! </tex>, <tex> h^k = h_1^{k_1} \cdot ... \cdot h_n^{k_n} </tex>, где <tex> h \in \mathbb{R}^n </tex>. === Формула Тейлора (различные виды записи) ===Из теорем: <tex dpi="150"> f(x) = \sum_{(k) \leqslant r} \frac{f^{(k)} (a) }{k!} (x - a)^k + \sum_{(k) = r + 1} \frac{f^{(k)} (a + \theta(x - a))}{k!} (x - a)^k </tex> <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + \sum_{(k) = r + 1} \frac{f^{(k)} (x + \theta h)}{k!} h^k </tex> <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + o(|h|^r), \ h \to \mathbb{O}_n </tex> С остатком в интегральной форме: <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + \int\limits_0^1 \sum_{(k) = r + 1} \frac{r + 1}{k!} f^{(k)} (x + th) h^k (1 - t)^r dt </tex> Формула в дифференциалах: <tex dpi="150"> f(x + h) = \sum_{l=0}^{r} \frac{1}{l!} d^l f(x, h) + \frac{1}{(r+1)!} d^{r + 1} f(x + \theta h, h) </tex> Формула в координатах: <tex dpi="150"> f(x, y) = \sum_{l=0}^r \frac{1}{l!} \sum_{\nu = 0}^{l} C_l^{\nu} \frac{\partial^l f(x^0, y^0)}{\partial x^{\nu} \partial y^{l - \nu}} (x - x^0)^{\nu} (y - y^0)^{l - \nu} + o((\sqrt{(x - x^0)^2 + (y - y^0)^2} )^r), \ (x , y) \to (x^0, y^0) </tex> === $n$-й дифференциал ==={{Определение|definition=Пусть <tex> f: \mathbb{R}^m \to \mathbb{R}, \ f \in C^r(\mathbb{R}^m) </tex>. Тогда: <tex> df(a) = f'_{x_1}(a) dx_1 + ... + f'_{x_m}(a)dx_m </tex> <tex> d^2f(a) = d(df(a)) = f''_{x_1, x_1} dx_1 dx_1 + f''_{x_1, x_2} dx_1 dx_2 + f''_{x_2, x_1} dx_2 dx_1 + ... </tex> <tex> d^3f(a) = d(d^2f(a)) = ... </tex> <tex> d^r f(a) = \sum c_{i_1, ..., i_r} \frac{\partial^r f(a)}{\partial x_{i_1} \cdot ... \cdot x_{i_r}} dx_{i_1} \cdot ... \cdot dx_{i_r} </tex>, где <tex> c_{i_1, ..., i_r} </tex> — количество способов получить дифференциал, выбирая разный порядок.}} === Норма линейного оператора ===Напомним, что норма в векторном пространстве <tex> X </tex> над <tex> \mathbb{R} </tex> — функция <tex> p: X \to \mathbb{R}_+ </tex>, удовлетворяющая аксиомам нормы: положительная определённость (<tex> p(x) = 0 </tex> тогда и только тогда, когда <tex> x = 0 </tex>), положительная однородность (<tex> p(\lambda x) = |\lambda| p(x) </tex>, где <tex> \lambda </tex> — скаляр), неравенство треугольника (<tex> p(x + y) \leqslant p(x) + p(y)</tex>). Аналогично для матриц (там <tex> \lambda \in \mathbb{R} </tex>).{{Определение|definition=Пусть <tex> X, Y </tex> — нормированные пространства (оба вещественные или оба комплексные), <tex> A: X \to Y </tex> — линейный оператор. Нормой оператора <tex> A </tex> называется величина <tex> || A || = \underset{|x| \leqslant 1}{\sup} |Ax| </tex>.}} === Локальный максимум, минимум, экстремум ==={{Определение|definition=Пусть <tex> f: D \subset \mathbb{R}^n \to \mathbb{R}, \ x_0 \in D </tex>. Если существует такая окрестность <tex> V_{x_0} </tex> точки <tex> x_0 </tex>, что для любого <tex> x \in V_{x_0} \cap D </tex> выполняется неравенство: <tex> f(x) \leqslant f(x_0) </tex>, то <tex> x_0 </tex> называется точкой максимума функции <tex> f </tex>; <tex> f(x) < f(x_0) </tex>, то <tex> x_0 </tex> называется точкой строгого максимума функции <tex> f </tex>. Аналогично определяются точки минимума и строгого минимума. Если <tex> x_0 </tex> является точкой (строгого) максимума или минимума функции <tex> f </tex>, то <tex> x_0 </tex> называется точкой (строгого) экстремума <tex> f </tex>.}} === Положительно-, отрицательно-, незнако- определенная квадратичная форма ==={{Определение|definition=Пусть <tex> K </tex> — квадратичная форма от <tex> n </tex> переменных. <br> 1) Если <tex> K(h) > 0 </tex> для всех <tex> h \in \mathbb{R}^n \backslash \{ \mathbb{O}_n \} </tex>, то форма <tex> K </tex> называется положительно определённой. <br> 2) Если <tex> K(h) < 0 </tex> для всех <tex> h \in \mathbb{R}^n \backslash \{ \mathbb{O}_n \} </tex>, то форма <tex> K </tex> называется отрицательно определённой. <br> 3) Если форма <tex> K </tex> принимает значения разных знаков, то <tex> K </tex> называется неопределённой. <br> 4) Если <tex> K(h) \geqslant 0 \ (K(h) \leqslant 0) </tex> для всех <tex> h \in \mathbb{R}^n </tex> и существует такое <tex> h \neq \mathbb{O}_n </tex>, что <tex> K(h) = 0 </tex>, то форма <tex> K </tex> называется положительно (отрицательно) полуопределённой.}} === Диффеоморфизм ==={{Определение|definition=Отображение <tex> F: O \subset \mathbb{R}^m \to \mathbb{R}^m </tex>, где <tex> O </tex> открыто, называется диффеоморфизмом, если оно дифференцируемо в <tex> O </tex>, обратимо, и обратное к нему тоже дифференцируемо.}} === Формулировка теоремы о неявном отображении в терминах систем уравнений ==={{Теорема|statement=Дана система из <tex> n </tex> уравнений для функций от <tex> m + n </tex> переменных. Функции дифференцируемы <tex> n </tex> раз. <tex> \begin{cases}f_1(x_1, ..., x_m, y_1, ..., y_n) = 0 \\ ... \\f_n(x_1, ..., x_m, y_1, ..., y_n) = 0\end{cases} </tex> <tex dpi="150"> \frac{\partial F}{\partial y} :=\begin{pmatrix}\frac{\partial f_1}{\partial y_1} & ... & \frac{\partial f_1}{\partial y_n} \\\ & ... & \ \\\frac{\partial f_n}{\partial y_1} & ... & \frac{\partial f_n}{\partial y_n}\end{pmatrix} </tex> Пусть <tex> (a, b) = (a_1, ..., a_m, b_1, ..., b_n) </tex> удовлетворяет системе, <tex> \det (\frac{\partial F}{\partial y} (a, b)) \neq 0 </tex>. Тогда существует <tex> u(a) \subset \mathbb{R}^m </tex> и существует единственное отображение <tex> \Phi: \mathbb{R}^m \to \mathbb{R}^n, \ \Phi(a) = b, \ \Phi \in C^n </tex> такие, что <tex> \forall x \in u(a) \ (x, \Phi(x)) </tex> удовлетворяет системе.}} === Гладкое простое $k$-мерное многообразие в {\mathbb R}^m ==={{Определение|definition=<tex> M \subset \mathbb{R}^m </tex> — простое <tex> k </tex>-мерное многообразие, если <tex> \exists \Omega \subset \mathbb{R}^k \ \exists \Phi: \Omega \to M </tex>. <tex> \Phi </tex> называется параметризацией. Если <tex> \Phi: \Omega \to \mathbb{R}^m, \ \Phi \in C^r(\Omega, \mathbb{R}^m), \ \forall a \in \Omega \ \operatorname{rg} \Phi'(a) = k </tex> (<tex> \operatorname{rg} </tex> — ранг), то <tex> M </tex> — простое гладкое (класса <tex> C^r </tex>) <tex> k </tex>-мерное многообразие.}} === Относительный локальный максимум, минимум, экстремум ==={{Определение|definition=Пусть <tex> f: \mathbb{R}^{m+n} \to \mathbb{R}, \ \Phi: \mathbb{R}^{m+n} \to \mathbb{R}^n, \ H_{\Phi} = \{x \in \mathbb{R}^{m+n}: \ \Phi(x) = \mathbb{O}_n\} </tex> (<tex> \Phi(x) = \mathbb{O}_n </tex> — уравнение связи). Тогда <tex> p \in H_{\Phi} </tex> — локальный относительный (условный) экстремум <tex> f </tex> при условии <tex> \Phi = \mathbb{O}_n </tex>. Это значит, что <tex> p </tex> — локальный экстремум <tex> f | _{H_\Phi} </tex>. Если <tex> \exists U(p) \subset \mathbb{R}^{m+n} \ \forall x \in U(p) \cap H_{\Phi} \ f(x) > f(p) </tex>, то <tex> p </tex> — локальный минимум (строгий), если <tex> f(x) \geqslant f(p) </tex>, то <tex> p </tex> — локальный минимум (строгий). Аналогично задаются локальные максимумы.}} Или в стиле определения обычного экстремума:{{Определение|definition=Пусть <tex> f: D \subset \mathbb{R}^{n+m} \to \mathbb{R}, \ \Phi: D \to \mathbb{R}^m, \ x_0 \in D </tex>. Если <tex> \Phi (x_0) = \mathbb{O}_m </tex> и существует такая окрестность <tex> V_{x_0} </tex> точки <tex> x_0 </tex>, что для любого <tex> x \in V_{x_0} \cap D </tex>, удовлетворяющего условию <tex> \Phi(x) = \mathbb{O}_m </tex>, выполняется равенство <tex> f(x) \leqslant f(x_0) </tex>, то <tex> x_0 </tex> называется точкой условного или относительного максимума функции <tex> f </tex> при условии связи <tex> \Phi (x) = \mathbb{O}_m </tex>.}} === Формулировка достаточного условия относительного экстремума ==={{Утверждение|statement=Пусть для точки <tex> a </tex> выполняются условия теоремы о необходимом условии относительного экстремума. Пусть <tex> h = (h_1, ..., h_{m+n}) </tex> — решение уравнения <tex> \Phi'(a) h = 0 </tex>. Рассмотрим квадратичную форму <tex> Q(h_1, ..., h_m) = d^2 G_a </tex>, где <tex> G </tex> — функция Лагранжа (<tex> G(x) = f(x) + \sum_{i=1}^m \lambda_i \varphi_i(x) </tex>, <tex> \varphi_i </tex> — условия), где <tex> \lambda_1, ... \lambda_n </tex> взяты из условия «подозрительности» точек. Тогда если <tex> Q </tex>: 1) положительно определена, то <tex> a </tex> — точка локального относительного минимума; 2) отрицательно определена, то <tex> a </tex> — точка локального относительного максимума; 3) незнакоопределена, то <tex> a </tex> — за большого размера страница не точка локального относительного экстремума; 4) знакоопределена, но вырождена, то неизвестно, является ли <tex> a </tex> точкой локального относительного экстремума.}} === Кусочно-гладкий путь ==={{Определение|definition=Путь — <tex> \varphi: [a; b] \to \mathbb{R}^M </tex>, непрерывное <tex> L = \varphi([a; b]) </tex> — носитель пути («кривая») <tex> \varphi </tex> — кусочно-гладкий путь, если существует дробление <tex> t_0 = a < t_1 < ... < t_n = b </tex> такое, что <tex> \varphi|_{[t_{k - 1}, t_k]} </tex> — гладкий путь.}} === Интеграл векторного поля по кусочно-гладкому пути ==={{Определение|definition=<tex> V: E \subset \mathbb{R}^m \to \mathbb{R}^m </tex>, где <tex> E </tex> открыто — векторное поле. Рассматриваем только непрерывные векторные поля <tex> V </tex> — гладкое векторное поле, если <tex> V \in C^r (E, \mathbb{R}^m) </tex> Пусть <tex> V </tex> — непрерывное векторное поле в <tex> E </tex>, <tex> \gamma </tex> — кусочно-гладкий путь в <tex> E </tex>: <tex> \gamma: [a; b] \to E </tex>. Тогда интеграл векторного поля по пути <tex> \gamma </tex> равен <tex> I(V, \gamma) = \int\limits_a^b \left \langle V(\gamma(t)), \gamma'(t) \right \rangle dt = \int\limits_a^b (V_1 dx_1 + ... + V_m dx_m) </tex>, где <tex> x_i = \gamma_i(t) </tex>.}} === Потенциальное векторное поле ==={{Определение|definition=Пусть <tex> O \subset \mathbb{R}^m </tex> (<tex> O </tex> — область). <tex> V: O \to \mathbb{R}^m </tex> потенциально в <tex> O </tex>, если существует потенциал <tex> F: O \to \mathbb{R}^m </tex>, где <tex> F </tex> дифференцируемо в <tex> O </tex>, такой, что <tex> \frac{\partial F}{\partial x_k} = V_k, \ k \in [1 : m] </tex>.}} === Потенциал векторного поля ==={{Определение|definition=<tex> F </tex> из предыдущего определения — потенциал.}} === Похожие пути ==={{Определение|definition=Пути <tex> \gamma, \tilde{\gamma} : [a; b] \to \mathbb{R}^m </tex> — похожие, если у них существует общая «гусеница» («гусеница» — это сооружение из леммы о гусенице. Линия, а грузится на ней пересекающиеся шарики).}} === Локально-потенциальное векторное поле ==={{Определение|definition=<tex> V: O \to \mathbb{R}^m </tex> — локально-потенциальное, если <tex> \forall x \in O \ \exists U(x) \subset O </tex> такое, что <tex> V </tex> — потенциальное в <tex> U(x) </tex>.}} === Интеграл локально-потенциального векторного поля по произвольному пути ==={{Определение|definition=Интеграл локально-потенциального векторного поля по произвольному пути равен его интегралу по кусочно-гладкому пути, близкому к данному.}} === Гомотопия путей, связанная, петельная гомотопия ==={{Определение|definition=Пусть <tex> \gamma_0, \gamma_1: [a; bнекоторых телефонах] \to O </tex>. <tex> \Gamma: [a; b] \times [0; 1] \to O </tex> — гомотопия этих путей, если она непрерывна и <tex> \forall t \ \Gamma(t, 0) = \gamma_0 (t), \ \Gamma(t, 1) = \gamma_1(t) </tex>. Связанная гомотопия — <tex> \gamma_0 (a) = \gamma_1(a), \ \gamma_0 (b) = \gamma_1(b), \ \forall s \ \Gamma (a, s) = \gamma_0 (a), \ \Gamma (b, s) = \gamma_0 (b) </tex>. Петельная гомотопия — <tex> \gamma_0 (a) = \gamma_0(b), \ \gamma_1 (a) = \gamma_1(b), \ \forall s \in [0, 1] \ \Gamma (a, s) = \Gamma (b, s) </tex>.}} === Односвязная область ==={{Определение|definition=Область <tex> O </tex> — односвязная, если любая петля в <tex> O </tex> стягиваема: <tex> \forall \gamma: [a; b] \to O, \ \gamma(a) = \gamma(b), \ \gamma, \gamma_2 </tex> — петельно гомотопные пути, <tex> \gamma_2: [a; b] \to O, \gamma_2(t) \equiv \gamma(a) </tex>.}}  == Примеры ===== Производная линейного отображения ===<tex>L'(x) = L</tex> По определению: <tex>L(x + h) - L(x) = L(h)</tex>=== Правило цепочки: запись в координатах ====== $n$-угольник максимальной площади, вписанный в окружность ====== Непотенциальное векторное поле === === Односвязная область ===
Анонимный участник

Навигация