Изменения

Перейти к: навигация, поиск

Фибоначчиева куча

4 байта добавлено, 04:10, 25 октября 2021
Соедининение двух куч
'''Фибоначчиева куча''' (англ. ''Fibonacci heap'') {{---}} структура данных, отвечающая интерфейсу [[Приоритетные очереди#Операции | приоритетная очередь]]. Эта структура данных имеет меньшую [[Амортизационный анализ#Основные определения | амортизированную сложность]], чем такие приоритетные очереди как [[Биномиальная куча | биномиальная куча]] и [[Двоичная куча | двоичная куча]]. Изначально эта структура данных была разработана Майклом Фридманом<ref>[[wikipedia:en:Michael_Fredman | Майкл Фридман {{---}} Википедия]]</ref> и Робертом Тарьяном<ref>[[wikipedia:en:Robert_Tarjan | Роберт Тарьян {{---}} Википедия]]</ref> при работе по улучшению асимптотической сложности [[Алгоритм Дейкстры | алгоритма Дейкстры]]. Свое название Фибоначчиева куча получила  из-за использования некоторых свойств чисел Фибоначчи<ref>[[wikipedia:en:Fibonacci_number | Числа Фибоначчи {{---}} Википедия]]</ref> в [[Амортизационный анализ#Метод потенциалов | потенциальном анализе]] этой реализации.
== Структура ==
Фибоначчиева куча {{---}} набор из [[Дерево, эквивалентные определения | подвешенных деревьев]] удовлетворяющих свойству: каждый предок не больше своих детей(если дерево на минимум). Это означает, что минимум всей кучи это один из корней этих деревьев. Одним Одно из главных преимуществ Фибоначчиевой кучи {{---}} гибкость её структуры из-за того, что на деревья не наложены никакие ограничения по форме. Например, Фибоначчиева куча может состоять хоть из деревьев в каждом из которых по одному элементу. Такая гибкость позволяет выполнять некоторые операции лениво, оставляя работу более поздним операциям. Далее будут даны некоторые определения, которые понадобятся в дальнейшем.
{{Определение
|definition=
'''Степень кучи''' (англ. ''degree'') {{---}} наибольшая степень вершины этой кучи. Далее будем обозначать как <tex>degree(H)</tex>, где <tex>H</tex> это куча.
}}
 
== Реализация ==
[[File:Fibonacci-heap.png|thumb|340px|Пример фибоначчиевой кучи]]
'''Node''' child <span style="color:#008000"> // указатель на один из дочерних узлов</span>
'''Node''' left <span style="color:#008000"> // указатель на левый узел того же предка</span>
'''Node''' right <span style="color:#008000009000"> // указатель на правый узел того же предка</span>
'''int''' degree <span style="color:#008000"> // степень вершины</span>
'''boolean''' mark <span style="color:#008000">// был ли удален в процессе изменения ключа ребенок этой вершины)</span>
</code>Также стоит упомянуть, что нам нужнен нужен указатель только на одного ребенка, поскольку остальные хранятся в двусвязном списке с ним. Для доступа ко всей кучи куче нам тоже нужен всего один элемент, поэтому разумно хранить именно указатель на минимум кучи(он обязательно один из корней), а для получения размера за константное время будем хранить размер кучи отдельно.
<code style="display:inline-block">
'''struct''' fibonacciHeap
</code>
==== Соедининение двух куч ====
Для сливание сливания двух Фибоначчиевых куч необходимо просто объединить их корневые списки, а также обновить минимум новой кучи, если понадобится. Вынесем в вспомогательную функцию <tex>unionLists</tex> логику, объединяющую  два списка вершины, которых подаются ей в качестве аргументов.
<code style="display:inline-block">
'''function''' unionLists(first: '''Node''', second: '''Node'''):
min = that.min
</code>
 
==== Удаление минимального элемента====
Первая рассматриваемая операция, в ходе которой значительно меняется структура кучи. Здесь используется вспомогательная процедура <tex>consolidate</tex>, благодаря которой собственно и достигается желанная амортизированная оценка. В данном случае <tex> min = \varnothing</tex> не рассматривается и считается нарушением предусловий <tex>deleteMin</tex>
'''Node''' R = min.right
L.right = R
R.left = RL
'''if''' prevMin.right = prevMin <span style="color:#008000"> // отдельно рассмотрим случай с одним элементом</span>
min <tex>= \varnothing</tex>
'''return'''
min = min.right <span style="color:#008000"> // пока что перекинем указаиель указатель min на правого сына, а далее consolidate() скорректирует min в процессе выполнения</span>
consolidate()
size--
[[File:Fibonacci-heap-consolidate-example-7.png|thumb|center|500px|Финальное состояние кучи]]
 
==== Уменьшение значения элемента ====
<code style="display:inline-block">
'''function''' decreaseKey(x: '''Node''', newValue: '''int'''):
'''if''' newValue > x.parent.key <span style="color:#008000"> // если после изменения структкра структура дерева сохранится, то меняем и выходим</span>
x.key = newValue
'''return'''
'''Node''' parent = x.parent <span style="color:#008000"> // иначе вызываем cut и cascadingCut</span>
cut(x)
cascadingCut(x.parent)
</code>
===== Вырезание =====
R.left = L <span style="color:#008000"> // аккуратно удаляем текущую вершину</span>
L.right = R
x.right = x
x.left = x
x.parent.degree--
'''if''' x.parent.child = x <span style="color:#008000"> // чтобы родитель не потерял ссылку на сыновей проверяем: </span>
'''if''' x.right = x. <span style="color:#008000"> // если узел который мы вырезаем содержится в родителе, то меняем его на соседний</span>
x.parent.child <tex>= \varnothing</tex> <span style="color:#008000"> // иначе у родителтя родителя больше нет детей</span>
'''else'''
x.parent.child = x.right
x.right = x
x.left = x
x.parent <tex>= \varnothing</tex>
unionLists(min, x) <span style="color:#008000"> // вставляем наше поддерево в корневой список</span>
</code>
 
===== Каскадное вырезание =====
Перед вызовом каскадного вырезания нам известно, удаляли ли ребенка у этой вершины. Если у вершины до этого не удаляли дочерний узел (<tex> x.mark = false </tex>), то мы помечаем эту вершину (<tex> x.mark = true </tex>) и прекращаем выполнение операции. В противном случае применяем операцию <tex>\mathrm {cut}</tex> для текущей вершины и запускаем каскадное вырезание от родителя.
deleteMin()
</code>
 
== Время работы ==
==== Потенциал ====
* Большое потребление памяти на узел(минимум 21 байт)
* Большая константа времени работы, что делает ее малоприменимой для реальных задач
* Некоторые операции могут в худшем случае могут работать за <tex>O(n)</tex> времени
'''Достоинства''':
* Одно из лучших асимптотических времен работы для всех операций
Анонимный участник

Навигация