Функция Эйлера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Свойства функции Эйлера)
(Свойства функции Эйлера)
Строка 11: Строка 11:
 
<tex> \varphi (3) = 2</tex>,    <tex> \varphi (6) = 2</tex>.<br>
 
<tex> \varphi (3) = 2</tex>,    <tex> \varphi (6) = 2</tex>.<br>
 
==== Свойства функции Эйлера ====
 
==== Свойства функции Эйлера ====
*1. Функция Эйлера является [[Мультипликативность функции, свертка Дирихле|мультипликативной]] <tex> \varphi(a_1 a_2) = \varphi(a_1)\varphi(a_2) </tex>.
+
*1. '''Доказательство:'''  <tex> \varphi (p) = p-1 </tex>, p {{---}} [[Простые числа|простое]]<tex> \varphi (p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}</tex>.
** No answer.
+
** Логически понятно, если строго, то выводится из 2 свойства.
 
*2. Пусть <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> — каноническое разложение числа '''a''', тогда
 
*2. Пусть <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> — каноническое разложение числа '''a''', тогда
 
<center><tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>. </center>
 
<center><tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>. </center>
** '''Доказательство:''' <tex> \varphi (p) = p-1 </tex>, p {{---}} [[Простые числа|простое]], несложно понять, что <tex> \varphi (p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}</tex>. Отсюда по [[Мультипликативность функции, свертка Дирихле|мультипликативности]] <tex> \varphi (a) = (p_1^{\alpha_1} - p_1^{\alpha_1-1}) (p_2^{\alpha_2} - p_2^{\alpha_2-1}) \ldots (p_k^{\alpha_k} - p_k^{\alpha_k-1})</tex>, выносим из каждой скобки <tex> p_i^{\alpha_i}</tex>, получаем <tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>.
+
 
 
** '''Доказательство:'''  Пусть <tex> x </tex> пробегает числа <tex> 0,1,2,\ldots,a-1</tex>, положим <tex> \sigma_x = (a, x)</tex> {{---}} [[Наибольший общий делитель|НОД]]. Тогда <tex> \varphi(a) </tex> есть число значений <tex> \sigma_x </tex>, равных единице. Возьмем функцию, которая равна единице, если <tex> \sigma_x = 1</tex>, и равна нулю в остальных случаях. Вот такая функция : <tex>\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}</tex>, где <tex> \mu(a) </tex> {{---}} [[Функция Мебиуса|функция Мебиуса]]. Отсюда <tex> \varphi(a) = \sum_{0 \le x \le a-1}(\sum_{d | a} \mu(d))</tex>. Поскольку справа сумма в скобках берется по всем делителям '''d''' числа <tex> \sigma_x = ( x , a )</tex>, то '''d''' делит '''x''' и  '''a''' . Значит в первой сумме справа в суммировании участвуют только те '''x''' , которые кратны '''d''' . Таких '''x''' среди чисел <tex> 0,1,2,\ldots,a-1</tex> ровно <tex> \frac{a}{d} </tex> штук. Получается, что <tex> \varphi(a) = \sum_{d | a} \frac{a}{d}\mu(d) = a\sum_{d | a} \frac{\mu(d)}{d} = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>.
 
** '''Доказательство:'''  Пусть <tex> x </tex> пробегает числа <tex> 0,1,2,\ldots,a-1</tex>, положим <tex> \sigma_x = (a, x)</tex> {{---}} [[Наибольший общий делитель|НОД]]. Тогда <tex> \varphi(a) </tex> есть число значений <tex> \sigma_x </tex>, равных единице. Возьмем функцию, которая равна единице, если <tex> \sigma_x = 1</tex>, и равна нулю в остальных случаях. Вот такая функция : <tex>\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}</tex>, где <tex> \mu(a) </tex> {{---}} [[Функция Мебиуса|функция Мебиуса]]. Отсюда <tex> \varphi(a) = \sum_{0 \le x \le a-1}(\sum_{d | a} \mu(d))</tex>. Поскольку справа сумма в скобках берется по всем делителям '''d''' числа <tex> \sigma_x = ( x , a )</tex>, то '''d''' делит '''x''' и  '''a''' . Значит в первой сумме справа в суммировании участвуют только те '''x''' , которые кратны '''d''' . Таких '''x''' среди чисел <tex> 0,1,2,\ldots,a-1</tex> ровно <tex> \frac{a}{d} </tex> штук. Получается, что <tex> \varphi(a) = \sum_{d | a} \frac{a}{d}\mu(d) = a\sum_{d | a} \frac{\mu(d)}{d} = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>.
 +
 +
*3. Функция Эйлера является [[Мультипликативность функции, свертка Дирихле|мультипликативной]] <tex> \varphi(a_1 a_2) = \varphi(a_1)\varphi(a_2) </tex>.
 +
** Вытекает из первого свойства.

Версия 04:38, 13 октября 2010

Функция Эйлера

Определение:
Функция Эйлера [math]\varphi (a) [/math] определяется для всех целых положительных a и представляет собою число чисел ряда [math]0, 1, \ldots, a-1 [/math], взаимно простых с a.


Примеры:

[math] \varphi (1) = 1[/math], [math] \varphi (4) = 2[/math],
[math] \varphi (2) = 1[/math], [math] \varphi (5) = 4[/math],
[math] \varphi (3) = 2[/math], [math] \varphi (6) = 2[/math].

Свойства функции Эйлера

  • 1. Доказательство: [math] \varphi (p) = p-1 [/math], p — простое, [math] \varphi (p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}[/math].
    • Логически понятно, если строго, то выводится из 2 свойства.
  • 2. Пусть [math] a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}[/math] — каноническое разложение числа a, тогда
[math] \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})[/math].
    • Доказательство: Пусть [math] x [/math] пробегает числа [math] 0,1,2,\ldots,a-1[/math], положим [math] \sigma_x = (a, x)[/math]НОД. Тогда [math] \varphi(a) [/math] есть число значений [math] \sigma_x [/math], равных единице. Возьмем функцию, которая равна единице, если [math] \sigma_x = 1[/math], и равна нулю в остальных случаях. Вот такая функция : [math]\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n\gt 1.\end{cases}[/math], где [math] \mu(a) [/math]функция Мебиуса. Отсюда [math] \varphi(a) = \sum_{0 \le x \le a-1}(\sum_{d | a} \mu(d))[/math]. Поскольку справа сумма в скобках берется по всем делителям d числа [math] \sigma_x = ( x , a )[/math], то d делит x и a . Значит в первой сумме справа в суммировании участвуют только те x , которые кратны d . Таких x среди чисел [math] 0,1,2,\ldots,a-1[/math] ровно [math] \frac{a}{d} [/math] штук. Получается, что [math] \varphi(a) = \sum_{d | a} \frac{a}{d}\mu(d) = a\sum_{d | a} \frac{\mu(d)}{d} = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})[/math].
  • 3. Функция Эйлера является мультипликативной [math] \varphi(a_1 a_2) = \varphi(a_1)\varphi(a_2) [/math].
    • Вытекает из первого свойства.