Цепные дроби как приближение к числу — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема 4)
(Доказательство)
Строка 26: Строка 26:
 
Любую конечную цепную дробь <math><a_0, a_1, a_2,\cdots, a_n></math> с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей.
 
Любую конечную цепную дробь <math><a_0, a_1, a_2,\cdots, a_n></math> с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей.
 
====Доказательство====
 
====Доказательство====
Если <math>a_n \geqslant 2 : <a_0, a_1, a_2,\cdots,a_n> = <a_0, a_1, a_2,\cdots,a_n-1,1></math>. Если <math>a_n = 1 : <a_0, a_1, a_2,\cdots,a_{n-1}, 1> = <a_0, a_1, a_2,\cdots,a_{n-1} + 1></math>.  
+
Если <math>a_n \geqslant 2</math> : <math><a_0, a_1, a_2,\cdots,a_n> = <a_0, a_1, a_2,\cdots,a_n-1,1></math>. Если <math>a_n = 1</math> : <math><a_0, a_1, a_2,\cdots,a_{n-1}, 1> = <a_0, a_1, a_2,\cdots,a_{n-1} + 1></math>.
 +
 
 
===Доказательство===
 
===Доказательство===

Версия 11:18, 21 июня 2010

Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число [math]\alpha[/math] разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству: [math]~|\alpha-\frac{P_i}{Q_i}| \lt \frac{1}{Q_i * Q_{i+1}} \lt \frac{1}{Q_i^2}[/math]

Теорема 1

Для любого иррационального числа [math]\alpha[/math] существует бесконечное число дробей [math]\frac{P}{Q}[/math] таких, что [math]~|\alpha-\frac{P}{Q}|\lt \frac{1}{2Q^2}[/math]

Доказательство

Рассмотрим две последующие подходящие дроби к [math]\alpha : \frac{P_k}{Q_k} [/math] и [math] \frac{P_{k+1}}{Q_{k+1}}[/math]. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: [math]~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{2Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_{k+1}^2}[/math]. Отсюда [math]~|\alpha-\frac{P_k}{Q_k}|+~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}[/math]. Но поскольку [math]\alpha[/math] лежит между [math]\frac{P_k}{Q_k}[/math] и [math]\frac{P_{k+1}}{Q_{k+1}}[/math], то [math]~|\alpha-\frac{P_k}{Q_k}|+~|\alpha-\frac{P_{k+1}}{Q_{k+1}}| = ~|\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}[/math], вследствие чего [math]\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}\leqslant\frac{1}{Q_k Q_{k+1}}[/math]. Следовательно [math](\frac{1}{Q_k}-\frac{1}{Q_{k+1}})^2 \leqslant 0[/math], что невозможно. Мы пришли к противоречию. Поэтому по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения k, получим бесконечное множество дробей, удовлетворяющих условию теоремы. q.e.d.

Теорема 2

Для любого иррационального числа [math]\alpha[/math] существует бесконечное число дробей [math]\frac{P}{Q}[/math] таких, что [math]~|\alpha-\frac{P}{Q}|\lt \frac{1}{\sqrt{5}Q^2}[/math]

Доказательство

Рассмотрим три последующие подходящие дроби к [math]\alpha : \frac{P_k}{Q_k}, \frac{P_{k+1}}{Q_{k+1}} [/math] и [math] \frac{P_{k+2}}{Q_{k+2}}[/math]. Пусть ни одна из них не удовлетворяет условию теоремы. Тогда имеем: [math]~|\alpha-\frac{P_k}{Q_k}|\geqslant\frac{1}{\sqrt{5}Q_k^2}, ~|\alpha-\frac{P_{k+1}}{Q_{k+1}}|\geqslant\frac{1}{\sqrt{5}Q_{k+1}^2}, ~|\alpha-\frac{P_{k+2}}{Q_{k+2}}|\geqslant\frac{1}{\sqrt{5}Q_{k+2}^2}[/math].

Так как [math]\frac{P_k}{Q_k}[/math] и [math]\frac{P_{k+1}}{Q_{k+1}}[/math] расположены по разные стороны от [math]\alpha[/math], то при нечётном [math]k[/math] имеем [math]\frac{P_k}{Q_k}+\frac{1}{\sqrt{5}Q_k^2}\leqslant\alpha\leqslant\frac{P_{k+1}}{Q_{k+1}}-\frac{1}{\sqrt{5}Q_{k+1}^2} [/math], а при чётном [math] k [/math] - [math]\frac{P_{k+1}}{Q_{k+1}}+\frac{1}{\sqrt{5}Q_{k+1}^2}\leqslant\alpha\leqslant\frac{P_k}{Q_k}-\frac{1}{\sqrt{5}Q_k^2}[/math].

Из последних двух неравенств следует, что [math]\frac{1}{\sqrt{5}}(\frac{1}{Q_k^2}+\frac{1}{Q_{k+1}^2})\leqslant~|\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}[/math]. Умножив обе части на [math]Q_{k+1}^2[/math] и перенеся все члены в левую часть получим: [math](\frac{Q_{k+1}}{Q_k})^2 - \sqrt{5}(\frac{Q_{k+1}}{Q_k}) + 1 \leqslant 0[/math]. То есть [math](\frac{Q_{k+1}}{Q_k}-\frac{\sqrt{5}}{2})^2 \leqslant \frac{1}{4}[/math], следовательно для целых [math]Q_k[/math] и [math]Q_{k+1}[/math] имеем [math]\frac{Q_{k+1}}{Q_k} \lt \frac{1+\sqrt{5}}{2}[/math].

Так как [math]\frac{P_{k+1}}{Q_{k+1}}[/math] и [math]\frac{P_{k+2}}{Q_{k+2}}[/math] расположены по разные стороны от [math]\alpha[/math], то аналогично получаем [math]\frac{Q_{k+2}}{Q_{k+1}} \lt \frac{1+\sqrt{5}}{2}[/math].

Пользуясь рекуррентным соотношением получаем [math]\frac{1+\sqrt{5}}{2} \gt \frac{Q_{k+2}}{Q_{k+1}} = \frac{Q_{k+1}a_{k+1}+Q_k}{Q_{k+1}} = a_{k+1} + \frac{Q_k}{Q_{k+1}} \gt 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}[/math]. Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения [math]k[/math] получим бесконечно много дробей, для которых выполняется условие теоремы. q.e.d.

Теорема 4

Если некоторая дробь [math]\frac{P}{Q}[/math] удовлетворяет условию [math]~|\alpha - \frac{P}{Q}|\lt \frac{1}{2Q^2}[/math], то она - подходящая дробь для [math] \alpha [/math].

Лемма1

Любую конечную цепную дробь [math]\lt a_0, a_1, a_2,\cdots, a_n\gt [/math] с чётным(нечётным) числом подходящих дробей можно представить в виде эквивалентной конечной цепной дроби с нечётным(чётным) числом подходящих дробей.

Доказательство

Если [math]a_n \geqslant 2[/math] : [math]\lt a_0, a_1, a_2,\cdots,a_n\gt = \lt a_0, a_1, a_2,\cdots,a_n-1,1\gt [/math]. Если [math]a_n = 1[/math] : [math]\lt a_0, a_1, a_2,\cdots,a_{n-1}, 1\gt = \lt a_0, a_1, a_2,\cdots,a_{n-1} + 1\gt [/math].

Доказательство