Изменения

Перейти к: навигация, поиск

Цепные дроби как приближение к числу

542 байта добавлено, 20:55, 2 июля 2010
Нет описания правки
{{Требует доработки|item1=Необходимо добавить теоремы о том, что для любого вещественного числа можно построить цепную дробь, подходящие дроби которой стремятся к этому числу и теорему о том, что для любых <tex>a_i</tex> (нулевое целое, остальные натуральные) подходящие дроби имеют предел.}} [[Цепная дробь|Цепные дроби ]] позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <tex>\alpha</tex> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:
<tex>|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i \cdot Q_{i+1}} < \frac{1}{Q_i^2}</tex>.
 
{{Теорема
|id=th1
Но поскольку <tex>\alpha</tex> лежит между <tex>\frac{P_k}{Q_k}</tex> и <tex>\frac{P_{k+1}}{Q_{k+1}}</tex>, то <tex>|\alpha-\frac{P_k}{Q_k}|+|\alpha-\frac{P_{k+1}}{Q_{k+1}}| = |\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}</tex>, вследствие чего <tex>\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}\leqslant\frac{1}{Q_k Q_{k+1}}</tex>. Следовательно <tex>(\frac{1}{Q_k}-\frac{1}{Q_{k+1}})^2 \leqslant 0</tex>, что невозможно. Мы пришли к противоречию. Поэтому, по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения <tex>k</tex>, получим бесконечное множество дробей, удовлетворяющих условию теоремы.
}}
 
{{Теорема
|id=th2
Пользуясь рекуррентным соотношением получаем <tex>\frac{1+\sqrt{5}}{2} > \frac{Q_{k+2}}{Q_{k+1}} = \frac{Q_{k+1}a_{k+1}+Q_k}{Q_{k+1}} = a_{k+1} + \frac{Q_k}{Q_{k+1}} > 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}</tex>. Пришли к противоречию. Значит для одной из трёх последовательных подходящих дробей будет выполняться условие теоремы. Тогда придавая различные значения <tex>k</tex> получим бесконечно много дробей, для которых выполняется условие теоремы.
}}
 
{{Лемма
|id=lm1
Если <tex>a_n \geqslant 2</tex> : <tex><a_0, a_1, a_2,\cdots,a_n> = <a_0, a_1, a_2,\cdots,a_n-1,1></tex>. Если <tex>a_n = 1</tex> : <tex><a_0, a_1, a_2,\cdots,a_{n-1}, 1> = <a_0, a_1, a_2,\cdots,a_{n-1} + 1></tex>.
}}
 
{{Лемма
|id=lm2
<tex>P_nS-Q_nR=(-1)^{n-1}=P_nQ_{n-1}-P_{n-1}Q_n</tex> следовательно <tex>P_n(S-Q_{n-1})=Q_n(R-P_{n-1})</tex>. Так как <tex>P_n</tex> и <tex> Q_n</tex> взаимно просты, то <tex>(S-Q_{n-1})\vdots Q_n </tex>. Но <tex>Q_n = Q > S</tex> следовательно <tex> Q_n > S-Q_{n-1}</tex>, что возможно только если <tex>S=Q_{n-1}</tex> аналогично <tex>R=P_{n-1}</tex>. Что и требовалось доказать.
}}
 
{{Теорема
|about=3
221
правка

Навигация