Числа Стирлинга первого рода — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
{{Определение
+
'''Числа Стирлинга первого рода''' (''Stirling numbers of the first kind'')  —  количество [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D1%8B перестановок] порядка <tex>n</tex> с <tex>k</tex> циклами. Иначе говоря, число Стирлинга первого рода определяется как количество перестановок из <tex>n</tex> элементов на <tex>k</tex> не пустых подмножеств, при этом две перестановки считаются различными, если хотя бы одно подмножество из первой перестановки нельзя получить ни из одного подмножества второй перестановки с помощью циклического сдвига. Числа Стирлинга 1-го рода обозначаются как <tex>s(n,k)</tex> или <tex>\left[{n\atop k}\right]</tex>.
|definition=
 
'''Числа Стирлинга первого рода''' (''Stirling numbers of the first kind'')  —  количество [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D1%8B перестановок] порядка <tex>n</tex> с <tex>k</tex> циклами.}}
 
  
 +
==Пример==
 +
<tex>s(4,2)=11([1;2][3;4]; [1;4][2;3]; [1;3][2;4]; [1][2;4;3]; [1][2;3;4]; [2][1;4;3]; [2][1;3;4]; [3][1;4;2]; [3][1;2;4]; [4][1;3;2]; [4][1; 2;3])</tex>.
 +
 +
Заметим, что перестановки <tex>[1][2;3;4]</tex> и <tex>[1][2;4;3]</tex> считаются различными, так как подмножество <tex>[2;3;4]</tex> невозможно получить ни из подмножества <tex>[1]</tex>, ни из подмножества <tex>[2;4;3]</tex> с помощью циклического сдвига элементов.
 +
 
==Соотношения==
 
==Соотношения==
Числами Стирлинга первого рода (со знаком) <tex>s(n, k)</tex> называются коэффициенты многочлена:
+
Равносильное определение получается, если числа Стирлинга задать как коэффициенты в разложении: <tex>(x)^{n} = \sum_{k=0}^n s(n,k) x^k,</tex>
<math>(x)_{n} = \sum_{k=0}^n s(n,k) x^k,</math>
 
 
 
где <math>(x)_n</math> — [http://en.wikipedia.org/wiki/Pochhammer_symbol символ Похгаммера] (убывающий факториал):
 
: <math>(x)_{n}=x(x-1)(x-2)\cdots(x-n+1).</math>
 
  
Числа имеют чередующийся знак, а их абсолютные значения, называемые числами Стирлинга первого рода (без знака), задают количество перестановок множества, состоящего из <tex>n</tex> элементов с <tex>k</tex> циклами.
+
Здесь <tex>(x)^{n}</tex> обозначим как возрастающие факториальные степени:
Беззнаковые числа Стирлинга задаются коэффициентами многочлена: <math>(x)^{n} = \sum_{k=0}^n s(n,k) x^k,</math>
 
  
где <math>(x)^n</math> — символ Похгаммера (возрастающий факториал):
+
:<tex>(x)^{n}=x(x+1)(x+2)\cdots(x+n-1).</tex>
: <math>(x)^{n}=x(x+1)(x+2)\cdots(x+n-1).</math>
 
  
 
=== Рекуррентное соотношение ===
 
=== Рекуррентное соотношение ===
  
 
Числа Стирлинга первого рода задаются рекуррентным соотношением:
 
Числа Стирлинга первого рода задаются рекуррентным соотношением:
:<math> s(0, 0) = 1 </math>,
+
:<tex> s(0, 0) = 1 </tex>,
:<math> s(n, 0) = 0 </math>, для <tex>n > 0</tex>,
+
:<tex> s(n, 0) = 0 </tex>, для <tex>n > 0</tex>,
:<math> s(0, k) = 0 </math>, для <tex>k > 0</tex>,
+
:<tex> s(0, k) = 0 </tex>, для <tex>k > 0</tex>.
:для чисел со знаком: <math> s(n, k) = s(n-1, k-1) - (n-1) \cdot s(n-1, k) </math> для <math>0 < k < n.</math>
+
 
:для чисел без знака: <math> s(n, k) = s(n-1, k-1) + (n-1) \cdot s(n-1, k) </math> для <math>0 < k < n.</math>
+
Выведем рекуррентную формулу для вычисления чисел Стирлинга первого рода. Каждое представление <tex>n</tex> элементов в виде <tex>k</tex> циклов либо помещает последний элемент(<tex>n-</tex>ый) в отдельный цикл <tex>s(n-1, k-1)</tex> способами, либо вставляет этот элемент в одно из <tex>s(n-1, k)</tex> циклических представлений первых <tex>(n-1)</tex> элементов. В последнем случае существует <tex>(n-1)</tex> различных способов подобной вставки. Например, при вставке элемента <tex>4</tex> в цикл <tex>[1;2;3]</tex> можно получить только 3 разных цикла: <tex>[1;2;3;4], [1;2;4;3], [1;4;2;3]</tex>. Таким образом, рекуррентность имеет вид:
 +
:<tex>s(n,k)=s(n-1,k-1)+(n-1)*s(n-1,k)</tex>
  
 
==Числа Стирлинга для малых N и K==
 
==Числа Стирлинга для малых N и K==
Строка 164: Строка 162:
  
 
==Тождества, включающие числа Стирлинга первого рода==
 
==Тождества, включающие числа Стирлинга первого рода==
===Простые тождества===
 
  
 
Как уже упоминалось ранее:
 
Как уже упоминалось ранее:
Строка 183: Строка 180:
  
 
<tex>s(n,n-3)={n \choose 2}{n \choose 4}</tex>
 
<tex>s(n,n-3)={n \choose 2}{n \choose 4}</tex>
 
===Другие тождества===
 
 
<tex>s(n,2)=(n-1)! H_{n-1}</tex>, где <tex>H_{n}</tex> — гармоническое число([http://en.wikipedia.org/wiki/Harmonic_number Harmonic number])
 
 
<tex>s(n,3)=\frac{1}{2} (n-1)! \left[ (H_{n-1})^2 - H_{n-1}^{(2)} \right]</tex>, где <tex>H_{n}^{(2)}</tex> — обобщенное гармоническое число([http://en.wikipedia.org/wiki/Harmonic_number#Generalized_harmonic_numbers Generalized harmonic number])
 
  
 
<tex>\sum_{k=0}^n s(n,k) = n!</tex> — конечная сумма.
 
<tex>\sum_{k=0}^n s(n,k) = n!</tex> — конечная сумма.
Строка 199: Строка 190:
  
 
* [http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind Stirling numbers of the first kind]
 
* [http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind Stirling numbers of the first kind]
 +
 +
[[Категория: Дискретная математика и алгоритмы]]
 +
[[Категория: Комбинаторика]]

Версия 19:53, 18 декабря 2012

Числа Стирлинга первого рода (Stirling numbers of the first kind) — количество перестановок порядка [math]n[/math] с [math]k[/math] циклами. Иначе говоря, число Стирлинга первого рода определяется как количество перестановок из [math]n[/math] элементов на [math]k[/math] не пустых подмножеств, при этом две перестановки считаются различными, если хотя бы одно подмножество из первой перестановки нельзя получить ни из одного подмножества второй перестановки с помощью циклического сдвига. Числа Стирлинга 1-го рода обозначаются как [math]s(n,k)[/math] или [math]\left[{n\atop k}\right][/math].

Пример

[math]s(4,2)=11([1;2][3;4]; [1;4][2;3]; [1;3][2;4]; [1][2;4;3]; [1][2;3;4]; [2][1;4;3]; [2][1;3;4]; [3][1;4;2]; [3][1;2;4]; [4][1;3;2]; [4][1; 2;3])[/math].

Заметим, что перестановки [math][1][2;3;4][/math] и [math][1][2;4;3][/math] считаются различными, так как подмножество [math][2;3;4][/math] невозможно получить ни из подмножества [math][1][/math], ни из подмножества [math][2;4;3][/math] с помощью циклического сдвига элементов.

Соотношения

Равносильное определение получается, если числа Стирлинга задать как коэффициенты в разложении: [math](x)^{n} = \sum_{k=0}^n s(n,k) x^k,[/math]

Здесь [math](x)^{n}[/math] обозначим как возрастающие факториальные степени:

[math](x)^{n}=x(x+1)(x+2)\cdots(x+n-1).[/math]

Рекуррентное соотношение

Числа Стирлинга первого рода задаются рекуррентным соотношением:

[math] s(0, 0) = 1 [/math],
[math] s(n, 0) = 0 [/math], для [math]n \gt 0[/math],
[math] s(0, k) = 0 [/math], для [math]k \gt 0[/math].

Выведем рекуррентную формулу для вычисления чисел Стирлинга первого рода. Каждое представление [math]n[/math] элементов в виде [math]k[/math] циклов либо помещает последний элемент([math]n-[/math]ый) в отдельный цикл [math]s(n-1, k-1)[/math] способами, либо вставляет этот элемент в одно из [math]s(n-1, k)[/math] циклических представлений первых [math](n-1)[/math] элементов. В последнем случае существует [math](n-1)[/math] различных способов подобной вставки. Например, при вставке элемента [math]4[/math] в цикл [math][1;2;3][/math] можно получить только 3 разных цикла: [math][1;2;3;4], [1;2;4;3], [1;4;2;3][/math]. Таким образом, рекуррентность имеет вид:

[math]s(n,k)=s(n-1,k-1)+(n-1)*s(n-1,k)[/math]

Числа Стирлинга для малых N и K

Ниже представлены некоторые значения чисел Стирлинга, которые легко подсчитать, используя рекуррентные соотношения

n\k 0 1 2 3 4 5 6 7 8 9
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1
8 0 5040 13068 13132 6769 1960 322 28 1
9 0 40320 109584 118124 67284 22449 4536 546 36 1

Тождества, включающие числа Стирлинга первого рода

Как уже упоминалось ранее:

[math]s(0,0)=1[/math]

[math]s(n,0)=s(0,k)=0[/math], в общем случае [math]s(n,k)=0[/math], если [math]k \gt n[/math]

Также

[math]s(n,1)=(n-1)![/math]

[math]s(n,n)=1[/math]

[math]s(n,n-1)={n \choose 2}[/math]

[math]s(n,n-2)=\frac{1}{4} (3n-1) {n \choose 3}[/math]

[math]s(n,n-3)={n \choose 2}{n \choose 4}[/math]

[math]\sum_{k=0}^n s(n,k) = n![/math] — конечная сумма.

См. также

Ссылки