Изменения

Перейти к: навигация, поиск

Числа Эйлера I и II рода

48 байт убрано, 10:02, 27 декабря 2013
Связь чисел Эйлера I рода с сечениями гиперкубов
[[Файл:HypercubeEuler2.png|200px|thumb|m = 2, n = 1. V = 1/2]]
[[Файл:HypercubeEuler3.png|200px|thumb|m = 3, n = 2. V = 1/6]]
Рассмотрим пересечение гиперкуба полупространством <tex>G^n_{1_{[n]},m}</tex>. Вектор <tex>1_{[n]}</tex> появляется здесь ввиду того, как мы определили в формулировке секущие гиперплоскости (<tex>x_1+x_2+...+x_n = m | m+1</tex>). Очевидно, что при данном значении вектора произведение <tex>\prod\limits_{i=1}^{n}w_i</tex> равно единице. Рассмотрим выражение, стоящее под знаком суммы. При итерации по подмножествам <tex>[n]</tex> равной мощности будут получаться одинаковые слагаемые, так как выражение <tex>(-1)^{|K|}(z-w \cdot 1_K)^n_+</tex> зависит лишь от мощности итерируемого в сумме подмножества <tex>K</tex> {{---}} векторное произведение <tex>w \cdot 1_K</tex> одинаково за счет того лишь факта, что модуль <tex>1_K</tex> зависит только лишь от мощности оно вычисляется как сумма произведений соответствующих координат, где ровно <tex>n - |K|</tex>, а угол между <tex>w</tex> и <tex>1_K</tex> одинаков ввиду того, как определяются эти вектораих обращаются в ноль. Такое скалярное произведение будет равно мощности <tex>K</tex>. Отсюда имеем <tex>{n \choose j}</tex> таких одинаковых слагаемых, где <tex>j = |K|</tex>.
Тогда перейдем от первоначальной формулировки теоремы к следующей:
85
правок

Навигация