Изменения

Перейти к: навигация, поиск

Эквивалентность состояний ДКА

7800 байт добавлено, 19:33, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Категория: Теория формальных языков]]== Эквивалентность автоматов Связь эквивалентности состояний и различимости состояний ==
{{Определение
|definition = Два <em> автомата</em> <tex> \mathcal{A}_1 = \langle Q_1,\Sigma,\delta_1,s_{101}, T_1\subseteq Q_1 \rangle </tex> и <tex>\mathcal{A}_2 = \langle Q_2,\Sigma,\delta_2,s_{202}, T_2\subseteq Q_2 \rangle </tex> называются <em>'''эквивалентными</em>''' (англ. ''equivalent''), если они распознают один и тот же язык над алфавитом <tex>\Sigma</tex>, то есть <tex>\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)</tex>.
}}
{{Определение
|definition = [[Основные определения, связанные со строками#string|Слово ]] <tex>z \in \Sigma^*</tex> '''различает ''' (англ. ''distinguish'') два состояния <tex>q_i</tex> и <tex>q_j</tex>, если * <tex> \langle q_i, z \rangle \vdash^* \langle t_1, \varepsilon \rangle, \langle q_j, z \rangle \vdash^* \langle t_2, \varepsilon \rangle \Rightarrow (t_1 \notin T \Leftrightarrow t_2 \in T ) </tex>.
}}
{{Определение
|definition = Два <em> состояния</em> <tex>q_i</tex> и <tex>q_j</tex> называются <em>'''эквивалентными</em> ''' <tex>(q_i \sim q_j)</tex>, если не существует [[Основные определения, связанные со строками#string|строки]], которая их различает, то есть <tex>\forall z\in \Sigma^*</tex> верно, что* <tex> \langle q_i, z \rangle \vdash^* \langle t_1, \varepsilon \rangle, \langle q_j, z \rangle \vdash^* \langle t_2, \varepsilon \rangle \Rightarrow (t_1 \in T \Leftrightarrow t_2 \in T ) </tex>.}} Заметим, что эквивалентность состояний действительно является [[Отношение эквивалентности|отношением эквивалентности]]. Так как <tex> \Leftrightarrow </tex> (равносильность) является отношением эквивалентности и в детерминированном автомате всегда существует путь по любому слову, описанное нами отношение является отношением эквивалентности. {{Лемма|statement =<tex> \mathcal{A} = \langle Q, \Sigma, \delta, s, T \rangle </tex>, <tex> p_1, p_2, q_1, q_2 \in Q </tex>, <tex> q_i = \delta(p_i, c) </tex>, <tex> w \in \Sigma^*</tex> различает <tex> q_1 </tex> и <tex> q_2 </tex>. Тогда <tex>cw</tex> различает <tex> p_1 </tex> и <tex> p_2 </tex>.|proof = <tex> \langle p_i, cw \rangle \vdash \langle q_i, w \rangle \vdash^* \langle t_i, \varepsilon \rangle </tex>А значит, по условию различимости для <tex> q_1 </tex> и <tex> q_2</tex> , <tex> t_1 \in T \Leftrightarrow t_2 \notin T </tex>
}}
*=== Пример ===[[Файл:avtomat2.png|200px]] [[Файл:avtomat3.png|200px]] Эти два автомата принимают слова из языка слов длины не меньше одного, состоящих из символов алфавита <tex> \lbrace 0, 1\rbrace </tex>. Стартовые и все допускающие состояния автоматов эквивалентны между собой. [[Категория: Теория формальных языков]][[Категория: Автоматы и регулярные языки]] == Проверка ДКА на эквивалентность ==Заданы два автомата: <tex> \mathcal{A}_1 </tex> со стартовым состоянием <tex> s_1 </tex> и <tex> \mathcal{A}_2 </tex> со стартовым состоянием <tex> s_2 </tex> соответственно. Нужно проверить их на эквивалентность. '''Пример двух эквивалентных автоматовЗамечание:'''для реализации оба автомата обязательно должны иметь [[Детерминированные_конечные_автоматы#допускает|дьявольские состояния]].=== Проверка через минимизацию ===Для этого построим автомат <tex> \mathcal{A} </tex>, содержащий все состояния обоих автоматов и изначальные переходы между ними. Стартовым состоянием в новом автомате можно сделать <tex> s_1 </tex> или <tex> s_2 </tex> — это не имеет значения. При этом состояния одного из автоматов станут недостижимыми из новой стартовой вершины в новом автомате, но для алгоритма это и не важно.<br>[[ИзображениеФайл:Automata1auto_equiq.png|470px]]<br>Осталось лишь проверить на эквивалентность состояния <tex> s_1 </tex> и <tex> s_2 </tex> в полученном автомате. Их эквивалентность совпадает с эквивалентностью автоматов <tex> \mathcal{A}_1 </tex> и <tex> \mathcal{A}_2 </tex>. Для этого можно применить [[ИзображениеМинимизация_ДКА,_алгоритм_за_O(n%5E2)_с_построением_пар_различимых_состояний|алгоритм минимизации ДКА]], который разбивает все состояния на классы эквивалентности. Если состояния <tex>s_1</tex> и <tex>s_2</tex> нового автомата в одном классе эквивалентности {{---}} исходные автоматы эквивалентны. Также можно минимизировать каждый автомат отдельно и проверить минимизированные версии на изоморфизм. === Проверка через BFS ===Два автомата можно также проверить на эквивалентность, используя [[Обход в ширину | обход в ширину]]. Будем синхронно обходить два автомата, начиная со стартовых состояний, в поисках такой строки, которая различает два состояния этих автоматов. То есть она будет допускаться одним автоматом, но не будет принадлежать языку другого. Поскольку эквивалентные автоматы допускают один и тот же язык, при переходе по одним и тем же символам в обоих автоматах, слово должно приниматься обоими автоматами одновременно. То есть вершины, в которые мы перешли, должны быть либо одновременно терминальными, либо одновременно нетерминальными, что и проверяет приведённый алгоритм. ==== Псевдокод ==== <font color=green>// $\mathtt{aut}[i][c]$ {{---}} номер состояния, в которое есть переход из состояния $i$ по символу $c$</font> '''boolean''' $\mathtt{bfsEquivalenceCheck}$($\mathtt{aut1}$ :Automata2'''int[][]''', $\mathtt{aut2}$ : '''int[][]'''): $Q.\mathtt{push}(\langle s_1, s_2 \rangle) $ <font color=green>// <tex> Q </tex> {{---}} очередь из пар состояний</font> '''while''' $Q \ne \varnothing $ $u, v \leftarrow Q.\mathtt{pop}()$ '''if''' $\mathtt{isTerminal1[u]} \ne \mathtt{isTerminal2[v]}$ '''return''' ''false'' $\mathtt{used[u][v]} \leftarrow $ ''true'' '''for''' $c \in \Sigma$ '''if''' '''not''' $\mathtt{used[aut1[u][c]][aut2[v][c]]}$ $Q.png\mathtt{push}(\langle \mathtt{aut1}[u][c], \mathtt{aut2}[v][c] \rangle)$ '''return''' ''true'' Корректность алгоритма следует из строго доказательства того факта, что если два состояния $u$ и $v$ различаются какой-то строкой, то они различаются строкой длины $O(n)$.
<em>Состояния <tex>B</tex> Интуитивное понимание алгоритма такое: пусть по строке $w$ мы пришли в состояния $ \langle u, v \rangle $, и <tex>C</tex> допускающиепусть они оба нетерминальные. После этого совершим переход по символу $c$ в состояния $ \langle u', v' \rangle $.</em>
Тогда если $\mathtt{isTerminal1[u']} \ne \mathtt{isTerminal2[v']}$, то строка $wc$ различает эти два состояния. А значит автоматы не эквивалентны.
== Алгоритм проверки эквивалентности автоматов См. также ==* [[Минимизация_ДКА,_алгоритм_за_O(n%5E2)_с_построением_пар_различимых_состояний|Алгоритм минимизации ДКА]]* [[Минимизация ДКА, алгоритм Хопкрофта (сложность O(n log n))]]
== Литература Источники информации ==* [http://stackoverflow.com/questions/6905043/equivalence-between-two-automata/12623361#12623361 StackOverflow {{---}} Equivalence between two automata]
1632
правки

Навигация