Изменения

Перейти к: навигация, поиск

Эргодическая марковская цепь

3924 байта добавлено, 15:39, 15 марта 2018
См. также
{{Определение
|definition=
'''Эргодическая''' [[Марковская цепь|марковская цепь]] (англ. ''ergodic Markov chain'') {{---}} марковская цепь, целиком состоящая из одного [[Марковская цепь#sort_def| эргодического класса]].
}}
==Стационарный режим==
Эргодические марковские цепи описываются [[Отношение связности, компоненты связности|сильно связным графом]]. Это означает, что в такой системе возможен переход из любого состояния <tex>S_i</tex> в любое состояние <tex>S_{j}, (i,j = 1,2,...\ldots,n)</tex> за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования (<tex>t \to \infty</tex>) наступает '''стационарный режим''', при котором вероятности <tex>\alpha_i</tex> состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени, т.е. то есть: <tex>\alpha_i = const</tex>.
== Классификация эргодических цепей ==
{{Определение
|definition=
В эргодической цепи можно выделить '''циклические классы'''(англ. ''cyclic classes''). Количество циклических классов <tex> d </tex> называют '''периодом цепи'''(англ. ''period of Markov chain''), если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''<tex>d''' </tex> шагов она оказывается в одном и том же циклическом классе.
}}
{{Определение
|definition=
'''Эргодическое (стационарное) распределение''' (англ. ''stationary distribution'') {{--- }} распределение <tex>\alpha = (\alpha_1 \dots ldots \alpha_n )</tex>, такое что <tex>\alpha_i > 0,\; i \in \mathbb{N}</tex> и<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \alpha_j</tex> (где <tex>p_{ij}^{(n)}</tex> {{- --}} вероятность оказаться в <tex>j</tex>-ом состоянии, выйдя из <tex>i</tex>-ого, через <tex>n</tex> переходов).
}}
|about=Эргодическая теорема
|statement=
здесь был трешДля любой эргодической цепи последовательность степеней <tex>P^{n}</tex> [http://en.wikipedia.org/wiki/Euler_summation суммируется по Эйлеру] к предельной матрице <tex>A</tex>, и эта предельная матрица имеет вид <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> {{---}} положительный вероятностный вектор, <tex>\xi</tex> - вектор-столбец из единиц.
|proof=
В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях <tex> n </tex>, которые периодически повторяются. Таким образом, никакая степень матрицы переходов <tex>P</tex> не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность <tex>P^{n}</tex> не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. блаблабла доказательство Рассмотрим матрицу <tex>(kI + (1 - k)P)</tex> при некотором <tex>k, ~ 0 < k < 1</tex>. Эта матрица является ''переходной матрицей''. Она имеет положительные элементы на всех тех же местах, что и <tex>P</tex>, следовательно, она также ''задает эргодическую цепь''. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что <tex>d = 1</tex>. Таким образом, новая цепь является регулярной. Из [[Регулярная марковская цепь#Эргодическая теорема для регулярных цепей | эргодической теоремы для регулярных цепей]] следует, что <tex>(kI + (1 - k)P)^{n}</tex> стремится к матрице <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> {{---}} положительный вероятностный вектор. Таким образом:: <tex> A = \lim\limits_{x\to \infty} (kI + (1 - k)P)^{n}</tex>: <tex> A = \lim\limits_{x\to \infty} \sum\limits_{i = 0}^{n} {n\choose i} k^{n - i} (1 - k)^{i} P^{i} ~~~~~ (1)</tex>Но последнее равенство в точности означает, что последовательность <tex>P^{n}</tex> суммируема по Эйлеру к <tex>A</tex>, причем суммируема при каждом значении <tex>k</tex>.}} ==== Следствия ==== {{Теорема|statement=Если <tex>P, A, \alpha</tex> {{---}} объекты из предыдущей теоремы. Тогда справедливы факты: * Для любого вероятностного вектора <tex>\pi</tex> последовательность <tex>\pi P^{n}</tex> суммируема по Эйлеру к <tex>\alpha</tex>* Вектор <tex>\alpha</tex> является единственным неподвижным вектором матрицы <tex>P</tex>* <tex>PA = AP = A</tex>|proof=Домножим <tex>(1)</tex> на <tex>\pi</tex>. Таким образом, мы получим, что предел последовательности <tex>\pi P^{n}</tex> в смысле Эйлера равен <tex>\pi A = \pi \xi \alpha</tex>. Значит, '''первый факт''' доказан.  Так как вектор <tex>\alpha</tex> был получен из предельной матрицы для <tex>(kI + (1 - k)P)</tex>, являющейся регулярной переходной матрицей, то он будет её единственным неподвижным вероятностным вектором. Но матрица <tex>(kI + (1 - k)P)</tex> должна иметь те же неподвижные векторы, что и <tex>P</tex>, так как из соотношения :<tex>\pi (kI + (1 - k)P) = \pi</tex>, следует, что :<tex>\pi (1 - k) P = \pi (1 - k)</tex>и поскольку <tex>k \ne 1</tex>, то <tex>\pi P = \pi</tex>. Получается, что '''второй факт''' доказан.  '''Третий факт''' следует из того, что <tex>P \xi = \xi</tex> для любой переходной матрицы и что <tex>\alpha P = \alpha</tex>.
}}
==Пример==
[[File:TempErgo.gifjpg‎|thumb|250px|Пример эргодической циклической цепи]]Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская Самым простым примером циклической цепи является цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монетыиз двух состояний, с вероятностью переходной матрицей::<tex>p P = \begin{pmatrix}0.5& 1 \\ 1 & 0\end{pmatrix}</tex>.
Рассмотрим матрицу, следующего вида: <tex>p_{ij}=0.5, i,j=1,2</tex>. Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение Стационарным распределением этой цепи будет <tex>\alpha = (0.5,0.5)</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \alpha_j, i=1,2</tex>.
==СсылкиСм. также==*[http://ru.wikipedia.org/wiki/Эргодическое_распределение Эргодическое распределение - Википедия[Марковская цепь]]*[[Регулярная марковская цепь]]*[[Примеры использования Марковских цепей]]
*[http://ru.wikipedia.org/wiki/Дискретное_распределение#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Дискретное распределение - Википедия]== Источники информации ==
==Литература==*[http://ru.wikipedia.org/wiki/Эргодическое_распределение Википедия {{---}} Эргодическое распределение ]*[http://ru.wikipedia.org/wiki/Дискретное_распределение#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Википедия {{---}} Дискретное распределение]*[http://en.wikipedia.org/wiki/Euler_summation Wikipedia {{---}} Euler summation]*Дж. Кемени, Дж. Снелл "{{---}} Конечные цепи Маркова" {{--- Издательство }} изд. "Наука", 1970 г . {{--- }} 129 c.
[[Категория:Дискретная математика и алгоритмы]]
[[Категория: Марковские цепи ]]
Анонимный участник

Навигация