Эргодическая марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 10: Строка 10:
 
  b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным)  
 
  b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным)  
 
  c) эргодическая цепь (граф переходов ориентированно связен).]]
 
  c) эргодическая цепь (граф переходов ориентированно связен).]]
 +
 +
==Основная теорема об эргодических распределениях==
 +
{{
 +
Теорема
 +
|about=Основная теорема об эргодических распределениях
 +
|statement=
 +
Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она
 +
# Неразложима <tex>(</tex>Если цепь Маркова такова, что её состояния образуют лишь один неразложимый класс, то она называется неразложимой<tex>)</tex>;
 +
# Положительно возвратна <tex>(</tex>Возвратное состояние <math>i</math> называется положительным, если <tex> \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} < \infty)</tex>;
 +
# Апериодична <tex>(</tex>Если <tex>d(j) = 1</tex> (где <tex>d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} > 0 \right)</tex>), то состояние <tex>j</tex> называется апериодическим<tex>)</tex>.
 +
Эргодическое распределение <tex>\mathbf{\pi}</tex> тогда является единственным решением системы:
 +
:<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.}}
  
  

Версия 09:52, 15 декабря 2011

Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Определение:
Марковская цепь называется эргодической, если любое состояние цепи является эргодическим (состояние цепи Маркова эргодическим, если оно одновременно возвратно и непериодично).


Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний [math]A_2, \, A_3[/math]); b) слабо эргодическая, но не эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связен).

Основная теорема об эргодических распределениях

Теорема (Основная теорема об эргодических распределениях):
Пусть [math]\{X_n\}_{n \ge 0}[/math] - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей [math]P = (p_{ij}),\; i,j=1,2,\ldots[/math]. Тогда эта цепь является эргодической тогда и только тогда, когда она
  1. Неразложима [math]([/math]Если цепь Маркова такова, что её состояния образуют лишь один неразложимый класс, то она называется неразложимой[math])[/math];
  2. Положительно возвратна [math]([/math]Возвратное состояние [math]i[/math] называется положительным, если [math] \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} \lt \infty)[/math];
  3. Апериодична [math]([/math]Если [math]d(j) = 1[/math] (где [math]d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} \gt 0 \right)[/math]), то состояние [math]j[/math] называется апериодическим[math])[/math].

Эргодическое распределение [math]\mathbf{\pi}[/math] тогда является единственным решением системы:

[math]\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}[/math].


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"