Ядра

Материал из Викиконспекты
Версия от 00:32, 5 апреля 2019; Egormkn (обсуждение | вклад) (Перенос информации из статьи про SVM)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Эта статья находится в разработке!

Ядро (англ. kernel) — функция $K: X \times X \to \mathbb{R}$, которая является скалярным произведением в некотором спрямляющем пространстве: $K(\vec{x}_1, \vec{x}_2) = \langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ при некотором $\psi : X \to H$, где $H$ — пространство со скалярным произведением.

Теорема Мерсера определяет условия, при которых функция может являться ядром:

Теорема (Мерсер):
Функция $K(\vec{x}_1, \vec{x}_2)$ является ядром тогда и только тогда, когда выполнены условия:

$\begin{cases}K(\vec{x}_1, \vec{x}_2) = K(\vec{x}_2, \vec{x}_1) & \text{(симметричность)} \\[1ex] \forall g: X \to \mathbb{R} \quad \int\limits_X \int\limits_X K(\vec{x}_1, \vec{x}_2) g(\vec{x}_1) g(\vec{x}_2) d \vec{x}_1 d \vec{x}_2 \geq 0 & \text{(неотрицательная определенность)}\end{cases}$

Проверка неотрицательной определённости является довольно трудоёмкой, поэтому на практике теорема явно не используется. Проблема выбора лучшего ядра на сегодняшний день остаётся открытой, лучшие из известных на данный момент решений основываются на генетических алгоритмах[1]). Обычно в практических реализациях ограничиваются перебором нескольких функций, про которые известно, что они являются ядрами, и выбирают среди них лучшую при помощи кросс-валидации. Кроме того, существуют правила порождения ядер, которые также применяются для расширения пространства перебираемых функций.


Конструктивные методы синтеза ядер:

  1. $K(\vec{x}_1, \vec{x}_2) = \langle \vec{x}_1, \vec{x}_2 \rangle \quad$ (скалярное произведение)
  2. $K(\vec{x}_1, \vec{x}_2) = \alpha \quad$ (константа $\alpha \in \mathbb{R}_+$)
  3. $K(\vec{x}_1, \vec{x}_2) = K_1(\vec{x}_1, \vec{x}_2) + K_2(\vec{x}_1, \vec{x}_2) \quad$ (сумма ядер)
  4. $K(\vec{x}_1, \vec{x}_2) = K_1(\vec{x}_1, \vec{x}_2) * K_2(\vec{x}_1, \vec{x}_2) \quad$ (произведение ядер)
  5. $K(\vec{x}_1, \vec{x}_2) = \psi(\vec{x}_1) * \psi(\vec{x}_2) \quad$ (произведение функций $\psi : X \to \mathbb{R}$)
  6. $K(\vec{x}_1, \vec{x}_2) = K_1(\phi(\vec{x}_1), \phi(\vec{x}_2)) \quad$ (композиция ядра и функции $\phi : X \to X$)
  7. $K(\vec{x}_1, \vec{x}_2) = \int\limits_X s(\vec{x}_1, \vec{z}) s(\vec{x}_2, \vec{z}) d \vec{z} \quad$ ($s : X \times X \to \mathbb{R}$ — симметричная интегрируемая функция)
  8. $K(\vec{x}_1, \vec{x}_2) = f(K_1(\vec{x}_1, \vec{x}_2)) \quad$ ($f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами)


Существует несколько "стандартных" ядер, которые соответствуют известным алгоритмам классификации:

  • $K(\vec{x}_1, \vec{x}_2) = (\langle \vec{x}_1, \vec{x}_2 \rangle + c)^d, \quad c, d \in \mathbb{R}$ — полиномиальное ядро
  • $K(\vec{x}_1, \vec{x}_2) = \sigma(\langle \vec{x}_1, \vec{x}_2 \rangle)$ — нейросеть с заданной функцией активации $\sigma(z)$ (не при всех $\sigma$ является ядром)
  • $K(\vec{x}_1, \vec{x}_2) = \exp(-\beta \lVert \vec{x}_1 - \vec{x}_2 \rVert^2)$ — сеть радиальных базисных функций (англ. RBF)
  • T.Howley, M.G.Madden — An Evolutionary Approach to Automatic Kernel Construction
  • Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Ядра&oldid=70747»