Редактирование: 1ripmtnsumwu

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 112: Строка 112:
  
 
=== Ассимптотика ===
 
=== Ассимптотика ===
На каждой из <tex>n</tex> итераций для <tex>j = 1 \ldots n </tex> существует <tex>O(k^2W)</tex> вычислямых значений <tex>P_{j - 1}(r, r', w'')</tex>, по одному на каждую комбинацию из <tex>r, r', w''</tex>. По представленной выше формуле, каждое значение <tex>P_{j - 1}(r, r', w'')</tex> находится с помощью минимизации из <tex>O(W)</tex> выборов <tex>w' < w''</tex>. Следовательно, время, требуемое для вычисления значений <tex>P_{j - 1}(r, r', w'')</tex>, ограниченно <tex>O(k^2W^2)</tex> на каждой итерации. Всего нам нужно посчитать <tex>O(kW)</tex> значений <tex>C_j(r,w)</tex>, по одному на каждую комбинацию <tex>r</tex> и <tex>w</tex>. Из формулы, приведенной для вычисления <tex>C_j(r,w)</tex>, каждое значение <tex>C_j(r,w)</tex> считается с помощью минимизации <tex>O(kW)</tex> выборов <tex>r', w'</tex>. Следовательно, время, требуемое для вычисления значений <tex>C_j(r,w)</tex> на каждой итерации, ограниченно <tex>O(k^2W^2)</tex>. Максимальный вес вычислимого множества может быть посчитан с помощью нахождения максимального значения <tex>w</tex> такого, что <tex>C_n(r_{\min},w)</tex> {{---}} конечно. Сделать это мы можем за <tex>O(W)</tex>. Итоговая сложность составляет <tex>O(nk^2W^2)</tex>.
+
На каждой из <tex>n</tex> итераций для <tex>j = 1 \ldots n </tex> существует <tex>O(k^2W)</tex> вычислямых значений <tex>P_{j - 1}(r, r', w'')</tex>, по одному на каждую комбинацию из <tex>r, r', w''</tex>. По представленной выше формуле, каждое значение <tex>P_{j - 1}(r, r', w'')</tex> находится с помощью минимизации из <tex>O(W)</tex> выборов <tex>w' < w''</tex>. Следовательно, время, требуемое для вычисления значений <tex>P_{j - 1}(r, r', w'')</tex>, ограниченно <tex>O(k^2W^2)</tex> на каждой итерации. Всего нам нужно посчитать <tex>O(kW)</tex> значений <tex>C_j(r,w)</tex>, по одному на каждую комбинацию <tex>r</tex> и <tex>w</tex>. Из формулы, приведенной для второго случая, каждое значение <tex>C_j(r,w)</tex> считается с помощью минимизации <tex>O(kW)</tex> выборов <tex>r', w'</tex>. Следовательно, время, требуемое для вычисления значений <tex>C_j(r,w)</tex> на каждой итерации, ограниченно <tex>O(k^2W^2)</tex>. Максимальный вес вычислимого множества может быть посчитан с помощью нахождения максимального значения <tex>w</tex> такого, что <tex>C_n(r_{\min},w)</tex> {{---}} конечно. Сделать это мы можем за <tex>O(W)</tex>. Итоговая сложность составляет <tex>O(nk^2W^2)</tex>.
  
 
Чтобы создать вычислимое множество с максимальным весом, мы считаем характеристический вектор, учитывая значения <tex>P_{j - 1}(r, r', w'')</tex> и <tex>C_j(r,w)</tex>. Вычисляем веторы за <tex>O(n^2k^2W)</tex>, это значение меньше, чем <tex>O(nk^2W^2)</tex>.
 
Чтобы создать вычислимое множество с максимальным весом, мы считаем характеристический вектор, учитывая значения <tex>P_{j - 1}(r, r', w'')</tex> и <tex>C_j(r,w)</tex>. Вычисляем веторы за <tex>O(n^2k^2W)</tex>, это значение меньше, чем <tex>O(nk^2W^2)</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: