2SAT — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Изменен порядок последних трех разделов.)
м (rollbackEdits.php mass rollback)
 
(не показано 12 промежуточных версий 7 участников)
Строка 7: Строка 7:
  
 
Рассмотрим любой дизъюнкт функции: <tex> a \vee b </tex>.
 
Рассмотрим любой дизъюнкт функции: <tex> a \vee b </tex>.
Несложно заметить, что это равнозначно записи <tex>(\overline a \to b \wedge b \to \overline a) </tex>.
+
Несложно заметить, что это равнозначно записи <tex>(\overline a \to b \wedge \overline b \to a) </tex>.
  
Построим [[Основные_определения_теории_графов|ориентированный граф]], где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: <tex>\overline a \to b </tex> и <tex> b \to \overline a </tex> для каждого дизъюнкта функции <tex> a \vee b </tex>.
+
Построим [[Основные_определения_теории_графов|ориентированный граф]], где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: <tex>\overline a \to b </tex> и <tex> \overline b \to a </tex> для каждого дизъюнкта функции <tex> a \vee b </tex>.
  
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Для того, чтобы данная задача <tex>\mathrm {2SAT}</tex> имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x \wedge x \to \overline x) </tex>.
+
Для того, чтобы данная задача <tex>\mathrm {2SAT}</tex> имела решение, необходимо и достаточно, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. <tex>(\overline x \to x) \wedge (x \to \overline x) </tex>.
 
|proof=
 
|proof=
<tex>(\Rightarrow)</tex>Докажем достаточность: Пусть <tex>\mathrm {2SAT}</tex>  имеет решение. Докажем, что не может быть такого, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> можно достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> можно достичь <tex> x </tex> одновременно. <tex>(\overline x \to x \wedge x \to \overline x) </tex>. Тогда чтобы из <tex> \overline x </tex> достичь <tex> x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен <tex> 1 </tex>. С другой стороны для того, чтобы из <tex> x </tex> достичь <tex> \overline x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен 0. Отсюда следует противоречие.
+
<tex>(\Rightarrow)</tex>Докажем необходимость: Пусть <tex>\mathrm {2SAT}</tex>  имеет решение. Докажем, что не может быть такого, чтобы для любой переменной <tex> x </tex> из вершины <tex> x </tex> можно достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> можно достичь <tex> x </tex> одновременно. <tex>((\overline x \to x) \wedge (x \to \overline x)) </tex>. Тогда чтобы из <tex> \overline x </tex> достичь <tex> x </tex> <tex> (\overline x \to x </tex> было верным), <tex> x </tex> должен быть равен <tex> 1 </tex>. С другой стороны для того, чтобы из <tex> x </tex> достичь <tex> \overline x </tex> <tex> (x \to \overline x </tex> было верным), <tex> x </tex> должен быть равен 0. Отсюда следует противоречие.
  
<tex>(\Leftarrow)</tex>Докажем необходимость: Пусть для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. Докажем, что этого достаточно, чтобы <tex>\mathrm {2SAT}</tex>  имело решение. Пусть из <tex> \overline x </tex> можно достичь <tex> x </tex>, но из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex>. Докажем, что из <tex> x </tex> не достижимо такой <tex> y </tex>, что из <tex> y </tex> достижимо <tex> \overline y </tex>. (т.е. <tex> x \to y \to \overline y (x = 1, y = 0)) </tex>. Если из <tex> x \to y </tex>, то <tex> \overline x \vee y </tex>, отсюда следует <tex> \overline y \to \overline x </tex>. Тогда <tex> x \to y \to \overline y \to \overline x </tex>. Следовательно <tex> x \to \overline x </tex>. Противоречие.
+
<tex>(\Leftarrow)</tex>Докажем достаточность: Пусть для любой переменной <tex> x </tex> из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex> и из вершины <tex> \overline x </tex> нельзя достичь <tex> x </tex> одновременно. Докажем, что этого достаточно, чтобы <tex>\mathrm {2SAT}</tex>  имело решение. Пусть из <tex> \overline x </tex> можно достичь <tex> x </tex>, но из вершины <tex> x </tex> нельзя достичь <tex> \overline x </tex>. Докажем, что из <tex> x </tex> не достижимо такой <tex> y </tex>, что из <tex> y </tex> достижимо <tex> \overline y </tex>. (т.е. <tex> x \to y \to \overline y\, (x = 1, y = 0)) </tex>. Если из <tex> x \to y </tex>, то <tex> \overline x \vee y </tex>, отсюда следует <tex> \overline y \to \overline x </tex>. Тогда <tex> x \to y \to \overline y \to \overline x </tex>. Следовательно <tex> x \to \overline x </tex>. Противоречие.
 
}}
 
}}
  
Строка 24: Строка 24:
 
#Построим граф импликаций.  
 
#Построим граф импликаций.  
 
#<i>Найдём в этом графе [[Отношение_связности,_компоненты_связности#Сильная связность | компоненты сильной связности]] за время <tex>O(N + M)</tex></i>, где <tex> N </tex> — количество вершин в графе (удвоенное количество переменных), а <tex> M </tex> — количество ребер графа (удвоенное количество дизъюнктов).
 
#<i>Найдём в этом графе [[Отношение_связности,_компоненты_связности#Сильная связность | компоненты сильной связности]] за время <tex>O(N + M)</tex></i>, где <tex> N </tex> — количество вершин в графе (удвоенное количество переменных), а <tex> M </tex> — количество ребер графа (удвоенное количество дизъюнктов).
#Пусть <tex>comp[v]</tex> — это номер компоненты сильной связности, которой принадлежит вершине <tex>v</tex>. Проверим, что для каждой переменной <tex>x</tex> вершины <tex>x</tex> и <tex>\overline x</tex> лежат в разных компонентах, т.е. <tex>comp[x] \ne comp[\overline x]</tex>. Если это условие не выполняется, то вернуть "решение не существует".  
+
#Пусть <tex>comp[v]</tex> — это номер компоненты сильной связности, которой принадлежит вершине <tex>v</tex>. Проверим, что для каждой переменной <tex>x</tex> вершины <tex>x</tex> и <tex>\overline x</tex> лежат в разных компонентах, т.е. <tex>comp[x] \ne comp[\overline x]</tex>. Если это условие не выполняется, то вернуть <i>решение не существует</i>.  
#Если <tex>comp[x] > comp[\overline x]</tex>, то переменной <tex>x</tex> выбираем значение <tex> \mathtt true</tex>, иначе — <tex> \mathtt false</tex>.
+
#Если <tex>comp[x] > comp[\overline x]</tex>, то переменной <tex>x</tex> выбираем значение <tex> \mathtt {true}</tex>, иначе — <tex> \mathtt {false}</tex>.
  
 
Компоненты сильной связности найдем за <tex>O(N + M)</tex>, затем проверим каждую из <tex>N</tex> переменных за <tex>O(N)</tex>. Следовательно асимптотика <tex>O(N + M)</tex>.
 
Компоненты сильной связности найдем за <tex>O(N + M)</tex>, затем проверим каждую из <tex>N</tex> переменных за <tex>O(N)</tex>. Следовательно асимптотика <tex>O(N + M)</tex>.
Строка 51: Строка 51:
 
Построим ориентированный граф со следующими множествами вершинам и ребер:
 
Построим ориентированный граф со следующими множествами вершинам и ребер:
 
множество вершин <tex> V = \{a, b, c, \overline a, \overline b, \overline c\}, </tex>
 
множество вершин <tex> V = \{a, b, c, \overline a, \overline b, \overline c\}, </tex>
множество ребер <tex> E = \{(\overline a, b), (\overline b, a), (\overline a, c), (\overline c, a), (b, c), (\overline c, \overline b), (\overline a, \overline b), (a, b)\}</tex>.
+
множество ребер <tex> E = \{(\overline a, b), (\overline b, a), (\overline a, c), (\overline c, a), (b, c), (\overline c, \overline b), (\overline a, \overline b), (b, a)\}</tex>.
  
 
Рассмотрим в графе следующие пути:
 
Рассмотрим в графе следующие пути:
Строка 91: Строка 91:
  
 
Построим ориентированный граф со следующими множествами вершинам и ребер:
 
Построим ориентированный граф со следующими множествами вершинам и ребер:
множество вершин V = \{a, b, c, \overline a, \overline b, \overline c\}, </tex>
+
множество вершин V = <tex>\{a, b, c, \overline a, \overline b, \overline c\}, </tex>
 
множество ребер <tex> E = \{(a, c), (\overline c, \overline a), (c, \overline a), (a, \overline c), (\overline a, b), (\overline b, a), (b, a), (\overline b, \overline a)\}</tex>.
 
множество ребер <tex> E = \{(a, c), (\overline c, \overline a), (c, \overline a), (a, \overline c), (\overline a, b), (\overline b, a), (b, a), (\overline b, \overline a)\}</tex>.
  
Строка 105: Строка 105:
  
 
Решение <tex>\mathrm {2SAT}</tex> может потребоваться в следующих задачах:  
 
Решение <tex>\mathrm {2SAT}</tex> может потребоваться в следующих задачах:  
*латинские квадраты,
+
*латинские квадраты<ref> [https://ru.wikipedia.org/wiki/Латинский_квадрат Википедия — Латинские квадраты] </ref>,  
*квазигруппы,
+
*квазигруппы<ref>[https://ru.wikipedia.org/wiki/Квазигруппа_(социология) Википедия — Квазигруппы]</ref>,
*числа Рамсея,
+
*числа Рамсея<ref>[https://ru.wikipedia.org/wiki/Теорема_Рамсея#.D0.A7.D0.B8.D1.81.D0.BB.D0.B0_.D0.A0.D0.B0.D0.BC.D1.81.D0.B5.D1.8F Википедия — Числа Рамсея]</ref>,
*система Штейнера,
+
*система Штейнера<ref>[https://ru.wikipedia.org/wiki/Система_Штейнера Википедия — Система Штейнера]</ref>,
 
*проектирование протоколов (пример: для сетевых коммуникаций),
 
*проектирование протоколов (пример: для сетевых коммуникаций),
 
*электронная коммерция (Электронные аукционы и автоматизированные брокеры,
 
*электронная коммерция (Электронные аукционы и автоматизированные брокеры,
Строка 119: Строка 119:
  
 
== Примечания ==
 
== Примечания ==
 
+
<references/>
*[https://ru.wikipedia.org/wiki/Латинский_квадрат Латинские квадраты]
 
*[https://ru.wikipedia.org/wiki/Квазигруппа_(социология) Квазигруппы]
 
*[https://ru.wikipedia.org/wiki/Теорема_Рамсея#.D0.A7.D0.B8.D1.81.D0.BB.D0.B0_.D0.A0.D0.B0.D0.BC.D1.81.D0.B5.D1.8F Числа Рамсея]
 
*[https://ru.wikipedia.org/wiki/Система_Штейнера Система Штейнера]
 
  
 
== Источники информации ==
 
== Источники информации ==
  
 
*[http://e-maxx.ru/algo/2_sat MAXimal :: algo :: Задача 2SAT (2-CNF) ]
 
*[http://e-maxx.ru/algo/2_sat MAXimal :: algo :: Задача 2SAT (2-CNF) ]
*[https://en.wikipedia.org/wiki/2-satisfiability 2-satisfiability — Википедия]
+
*[https://en.wikipedia.org/wiki/2-satisfiability Википедия — 2-satisfiability]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
  
 
[[Категория: Булевы функции ]]
 
[[Категория: Булевы функции ]]

Текущая версия на 19:29, 4 сентября 2022

Задача:
[math]\mathrm {2SAT}[/math] (2-satisfiability) выполнимость функции — задача распределения аргументов в булевой КНФ функции, записанной в виде 2-КНФ (КНФ Крома), таким образом, чтобы результат данной функции был равен [math] 1 [/math].


Алгоритм решения

Рассмотрим любой дизъюнкт функции: [math] a \vee b [/math]. Несложно заметить, что это равнозначно записи [math](\overline a \to b \wedge \overline b \to a) [/math].

Построим ориентированный граф, где вершинами будут аргументы и их отрицание, а ребрами будут ребра вида: [math]\overline a \to b [/math] и [math] \overline b \to a [/math] для каждого дизъюнкта функции [math] a \vee b [/math].

Теорема:
Для того, чтобы данная задача [math]\mathrm {2SAT}[/math] имела решение, необходимо и достаточно, чтобы для любой переменной [math] x [/math] из вершины [math] x [/math] нельзя достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] нельзя достичь [math] x [/math] одновременно. [math](\overline x \to x) \wedge (x \to \overline x) [/math].
Доказательство:
[math]\triangleright[/math]

[math](\Rightarrow)[/math]Докажем необходимость: Пусть [math]\mathrm {2SAT}[/math] имеет решение. Докажем, что не может быть такого, чтобы для любой переменной [math] x [/math] из вершины [math] x [/math] можно достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] можно достичь [math] x [/math] одновременно. [math]((\overline x \to x) \wedge (x \to \overline x)) [/math]. Тогда чтобы из [math] \overline x [/math] достичь [math] x [/math] [math] (\overline x \to x [/math] было верным), [math] x [/math] должен быть равен [math] 1 [/math]. С другой стороны для того, чтобы из [math] x [/math] достичь [math] \overline x [/math] [math] (x \to \overline x [/math] было верным), [math] x [/math] должен быть равен 0. Отсюда следует противоречие.

[math](\Leftarrow)[/math]Докажем достаточность: Пусть для любой переменной [math] x [/math] из вершины [math] x [/math] нельзя достичь [math] \overline x [/math] и из вершины [math] \overline x [/math] нельзя достичь [math] x [/math] одновременно. Докажем, что этого достаточно, чтобы [math]\mathrm {2SAT}[/math] имело решение. Пусть из [math] \overline x [/math] можно достичь [math] x [/math], но из вершины [math] x [/math] нельзя достичь [math] \overline x [/math]. Докажем, что из [math] x [/math] не достижимо такой [math] y [/math], что из [math] y [/math] достижимо [math] \overline y [/math]. (т.е. [math] x \to y \to \overline y\, (x = 1, y = 0)) [/math]. Если из [math] x \to y [/math], то [math] \overline x \vee y [/math], отсюда следует [math] \overline y \to \overline x [/math]. Тогда [math] x \to y \to \overline y \to \overline x [/math]. Следовательно [math] x \to \overline x [/math]. Противоречие.
[math]\triangleleft[/math]

Теперь мы можем собрать весь алгоритм воедино:

  1. Построим граф импликаций.
  2. Найдём в этом графе компоненты сильной связности за время [math]O(N + M)[/math], где [math] N [/math] — количество вершин в графе (удвоенное количество переменных), а [math] M [/math] — количество ребер графа (удвоенное количество дизъюнктов).
  3. Пусть [math]comp[v][/math] — это номер компоненты сильной связности, которой принадлежит вершине [math]v[/math]. Проверим, что для каждой переменной [math]x[/math] вершины [math]x[/math] и [math]\overline x[/math] лежат в разных компонентах, т.е. [math]comp[x] \ne comp[\overline x][/math]. Если это условие не выполняется, то вернуть решение не существует.
  4. Если [math]comp[x] \gt comp[\overline x][/math], то переменной [math]x[/math] выбираем значение [math] \mathtt {true}[/math], иначе — [math] \mathtt {false}[/math].

Компоненты сильной связности найдем за [math]O(N + M)[/math], затем проверим каждую из [math]N[/math] переменных за [math]O(N)[/math]. Следовательно асимптотика [math]O(N + M)[/math].

Примеры решения 2SAT

Первый пример

Рассмотрим следующую функцию: [math] (a \vee b) \wedge (a \vee c) \wedge (\overline b \vee c) \wedge (\overline b \vee a) [/math]

Данная функция эквивалентна функции [math] \overline a \to b \wedge \overline b \to a \wedge \overline a \to c \wedge \overline c \to a \wedge b \to c \wedge \overline c \to \overline b \wedge \overline a \to \overline b \wedge a \to b [/math].

Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин [math] V = \{a, b, c, \overline a, \overline b, \overline c\}, [/math] множество ребер [math] E = \{(\overline a, b), (\overline b, a), (\overline a, c), (\overline c, a), (b, c), (\overline c, \overline b), (\overline a, \overline b), (b, a)\}[/math].

Рассмотрим в графе следующие пути:

  • [math] \overline a \to b \to a [/math]
  • [math] \overline a \to \overline b \to a [/math]
  • [math] \overline c \to a [/math]
  • [math] a \to c [/math]
  • [math] \overline a \to b \to c [/math].

Т.к. [math] \overline a \to a [/math], то [math] a = 1, \overline a = 0 [/math].

Т.к. [math] a \to c [/math] и [math] a = 1 [/math], то [math] c = 1, \overline c = 0 [/math].

Значения [math] b [/math] может быть любым, т.к. все вершины, из которых можно добраться в [math] b [/math] имеют значение ноль.

Ответ: [math] a = 1, b = 0, c = 1 [/math] или [math] a = 1, b = 1, c = 1 [/math].

Второй пример

Рассмотрим следующую функцию: [math] (\overline a \vee c) \wedge (\overline c \vee \overline a) \wedge (a \vee b) \wedge (\overline b \vee a) [/math]

Данная функция эквивалентна функции [math] a \to c \wedge \overline c \to \overline a \wedge c \to \overline a \wedge a \to \overline c \wedge \overline a \to b \wedge \overline b \to a \wedge b \to a \wedge \overline b \to \overline a [/math]

Построим ориентированный граф со следующими множествами вершинам и ребер: множество вершин V = [math]\{a, b, c, \overline a, \overline b, \overline c\}, [/math] множество ребер [math] E = \{(a, c), (\overline c, \overline a), (c, \overline a), (a, \overline c), (\overline a, b), (\overline b, a), (b, a), (\overline b, \overline a)\}[/math].

Заметим следующий путь: [math] a \to c \to \overline a \to b \to a [/math].

Отсюда следует, что [math] a \to \overline a \to a [/math].

Следовательно по ранее доказанной теореме, у данной функции решений нет.

Ответ: Решений нет.

Использование 2SAT

Решение [math]\mathrm {2SAT}[/math] может потребоваться в следующих задачах:

  • латинские квадраты[1],
  • квазигруппы[2],
  • числа Рамсея[3],
  • система Штейнера[4],
  • проектирование протоколов (пример: для сетевых коммуникаций),
  • электронная коммерция (Электронные аукционы и автоматизированные брокеры,
  • теории кодирования, криптографии,
  • проектирование и тестирование лекарств (мед. препаратов).

См. также

Примечания

Источники информации