Редактирование: Convex hull trick

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 74: Строка 74:
  
 
==Детали реализации:==
 
==Детали реализации:==
Будем хранить 2 массива : <tex>front[]</tex> {{---}} <tex>x</tex>-координаты, начиная с которых прямые совпадают с выпуклой оболочкой (т.е. i-я прямая совпадает с выпуклой оболочкой текущего множества прямых при <tex>x</tex> <tex>\in</tex> <tex>[front[i]; front[i + 1])</tex> ) и <tex>st[]</tex> {{---}} номера деревьев, соответствующих прямым (т.е. <tex>i</tex>-я прямая множества, где <tex>i</tex> <tex>\in</tex> <tex>[1; sz]</tex> соответствует дереву номер <tex>sz[i]</tex>). Также воспользуемся тем, что <tex>x[i] = a[i]</tex> возрастают (по условию задачи), а значит мы можем искать первое такое <tex>j</tex>, что <tex>x[i] \geqslant front[j]</tex> не бинарным поиском, а методом двух указателей за <tex>O(n)</tex> операций суммарно. Также массив <math>front[]</math> можно хранить в целых числах, округляя х-координаты в сторону лежащих правее по оси x до ближайшего целого (*), т.к. на самом деле мы, считая динамику, подставляем в уравнения прямых только целые <tex>x[i]</tex>, а значит если <tex>k</tex>-я прямая пересекается с <tex>k+1</tex>-й в точке <tex>z +</tex> <tex>\alpha</tex> (<math>z</math>-целое,  <tex>\alpha</tex>  <tex>\in</tex> <tex>[0;1)</tex>), то мы будем подставлять в их уравнения <tex>z</tex>  или <tex>z + 1</tex>. Поэтому можно считать, что новая прямая начинает совпадать с выпуклой оболочкой, начиная с <tex>x = z+1</tex>
+
Будем хранить 2 массива : <tex>front[]</tex> {{---}} <tex>x</tex>-координаты, начиная с которых прямые совпадают с выпуклой оболочкой (т.е. i-я прямая совпадает с выпуклой оболочкой текущего множества прямых при <tex>x</tex> <tex>\in</tex> <tex>[front[i]; front[i + 1])</tex> ) и <tex>st[]</tex> {{---}} номера деревьев, соответствующих прямым (т.е. <tex>i</tex>-я прямая множества, где <tex>i</tex> <tex>\in</tex> <tex>[1; sz]</tex> соответствует дереву номер <tex>sz[i]</tex>). Также воспользуемся тем, что <tex>x[i] = a[i]</tex> возрастают (по условию задачи), а значит мы можем искать первое такое <tex>j</tex>, что <tex>x[i] \geqslant front[j]</tex> не бинарным поиском, а методом двух указателей за <tex>O(n)</tex> операций суммарно. Также массив front[] можно хранить в целых числах, округляя х-координаты в сторону лежащих правее по оси x до ближайшего целого (*), т.к. на самом деле мы, считая динамику, подставляем в уравнения прямых только целые <tex>x[i]</tex>, а значит если <tex>k</tex>-я прямая пересекается с <tex>k+1</tex>-й в точке <tex>z +</tex> <tex>\alpha</tex> (<math>z</math>-целое,  <tex>\alpha</tex>  <tex>\in</tex> <tex>[0;1)</tex>), то мы будем подставлять в их уравнения <tex>z</tex>  или <tex>z + 1</tex>. Поэтому можно считать, что новая прямая начинает совпадать с выпуклой оболочкой, начиная с <tex>x = z+1</tex>
  
 
==Реализация==
 
==Реализация==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: