Изменения

Перейти к: навигация, поиск

Convex hull trick

8 байт добавлено, 16:27, 22 января 2019
Реализация
Convex hull trick {{---}} один из методов оптимизации [[Динамическое_программирование | динамического программирования]], использующий идею [[Статические_выпуклые_оболочки:_Джарвис,_Грэхем,_Эндрю,_Чен,_QuickHull|выпуклой оболочки]]. Позволяет улучшить ассимптотику асимптотику решения некоторых задач, решемых методом динамического программирования, с <math>O(n^2)</math> до <tex>O(n\cdot\log(n))</tex>. Техника впервые появилась в 1995 году (задачу на нее предложили в USACO {{---}} национальной олимпиаде США по программированию). Массовую известность получила после IOI (международной олимпиады по программированию для школьников) 2002.
==Пример задачи, решаемой методом convex hull trick==
Понятно, что нужно затратив минимальную стоимость срубить последнее (<tex>n</tex>-е) дерево, т.к. после него все деревья можно будет рубить бесплатно (т.к. <tex>c[n] = 0</tex>). Посчитаем следующую динамику : <tex>dp[i]</tex> {{---}} минимальная стоимость, заплатив которую можно добиться того, что дерево номер <tex>i</tex> будет срублено.
База динамики : <tex>dp[1] = 0</tex>, т.к. изначально пила заправлена и высота первого дерева равна <math>1</math>, по условию задачи.
Переход динамики : понятно, что выгодно рубить сначала более дорогие и низкие деревья, а потом более высокие и дешевые (док-во этого факта оставляется читателям как несложное упражнение, т.к. эта идея относится скорее к теме [[Теорема_Радо-Эдмондса_(жадный_алгоритм)|жадных алгоритмов]], чем к теме данной статьи). Поэтому перед <tex>i</tex>-м деревом мы обязательно срубили какое-то <tex>j</tex>-е, причем <tex>j \leqslant i - 1</tex>. Поэтому чтобы найти <tex>dp[i]</tex> нужно перебрать все <tex>1 \leqslant j \leqslant i - 1</tex> и попытаться использовать ответ для дерева номер <tex>j</tex>. Итак, пусть перед <tex>i</tex>-м деревом мы полностью срубили <tex>j</tex>-е, причем высота <tex>i</tex>-го дерева составляет <tex>a[i]</tex>, а т.к. последнее дерево, которое мы срубили, имеет индекс <tex>j</tex>, то стоимость каждого метра <tex>i</tex>-го дерева составит <tex>c[j]</tex>. Поэтому на сруб <tex>i</tex>-го дерева мы потратим <tex>a[i] \cdot c[j]</tex> монет. Также не стоит забывать , что ситуацию, когда <tex>j</tex>-е дерево полностью срублено, мы получили не бесплатно, а за <tex>dp[j]</tex> монет.
Итоговая формула пересчета : <tex>dp[i] = \min\limits_{j=1...i-1} (dp[j] + a[i] \cdot c[j])</tex>.
==Цель нижней огибающей множества прямых==
Пусть мы считаем динамику для <tex>i</tex>-го дерева. Его задает <tex>x[i]</tex>. Итак, нам нужно для данного <tex>x[i]</tex> найти <tex>\min\limits_{j=0..i-1}(k[j] \cdot x[i] + b[ij]) = \min\limits_{j=0..i-1}(y[j](x[i]))</tex>. Это выражение есть <math>convex(x[i])</math>. Из монотонности угловых коэффицентов отрезков, задающих выпуклую оболочку, и их расположения по координатам x следует то, что отрезок, который пересекает прямую <tex>x = x[i]</tex>, можно найти [[Целочисленный_двоичный_поиск|бинарным поиском]]. Это потребует <tex>O(\log(n))</tex> времени на поиск такого <tex>j</tex>, что <tex>dp[i] = k[j] \cdot x[i] + b[j]</tex>. Теперь осталось научиться поддерживать множество прямых и быстро добавлять <tex>i</tex>-ю прямую после того, как мы посчитали <tex>b[i] = dp[i]</tex>.
Воспользуемся идеей алгоритма построения выпуклой оболочки множества точек. Заведем 2 стека <tex>k[]</tex> и <tex>b[]</tex>, которые задают прямые в отсортированном порядке их угловыми коэффицентами и свободными членами. Рассмотрим ситуацию, когда мы хотим добавить новую (<tex>i</tex>-тую) прямую в множество. Пусть сейчас в множестве лежит <tex>sz</tex> прямых (нумерация с 1). Пусть <tex>(x_L, y_L)</tex> {{---}} точка пересечения <tex>sz - 1</tex>-й прямой множества и <tex>sz</tex>-й, а <tex>(x_R, y_R)</tex> {{---}} точка пересечения новой прямой, которую мы хотим добавить в конец множества и <tex>sz</tex>-й. Нас будут интересовать только их <tex>x</tex>-овые координаты <tex>x_L</tex> и <tex>x_R</tex>, соответственно. Если оказалось, что новая прямая пересекает <tex>sz</tex>-ю прямую выпуклой оболочки позже, чем <tex>sz</tex>-я <tex>sz - 1</tex>-ю, т.е. <tex>(x_L \geqslant x_R)</tex>, то <tex>sz</tex>-ю удалим из нашего множества, иначе - остановимся. Так будем делать, пока либо число прямых в стеке не станет равным 2, либо <tex>x_L</tex> не станет меньше <tex>x_R.</tex>
'''int''' <tex>\mathtt{ConvexHullTrick}</tex>('''int''' a[n], '''int''' c[n])
st[1] = 1
fromfront[1] = -<tex>\infty</tex><font color=green>// первая прямая покрывает все x-ы, начиная с -∞ </font>
sz = 1 <font color=green>// текущий размер выпуклой оболочки </font>
pos = 1 <font color=green>// текущая позиция первого такого j, что x[i] \geqslant front[st[j]] </font >
sz = sz - 1<font color=green>// удаляем последнюю прямую, если она лишняя </font >
st[sz + 1] = i
fromfront[sz + 1] = x <font color=green>// добавили новую прямую </font >
sz = sz + 1
'''return''' dp[n]
Анонимный участник

Навигация