Fpij1sumwu — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Описание алгоритма)
Строка 1: Строка 1:
==Описание задачи==
+
<tex dpi = "200">F \mid p_{ij} = 1 \mid \sum w_iu_i</tex>
 +
{{Задача
 +
|definition=
 
Дано <tex>m</tex> станков, на которых нужно обработать <tex>n</tex> деталей. Каждую деталь нужно обработать по очереди на всех станках. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть дедлайн <tex>d_i</tex> {{---}} время, до которого она должна быть закончена, и штраф <tex>w_i</tex>, который нужно будет выплатить в случае, если работа была закончена после <tex>d_i</tex>. Необходимо минимизировать суммарный штраф, который придется выплатить.
 
Дано <tex>m</tex> станков, на которых нужно обработать <tex>n</tex> деталей. Каждую деталь нужно обработать по очереди на всех станках. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть дедлайн <tex>d_i</tex> {{---}} время, до которого она должна быть закончена, и штраф <tex>w_i</tex>, который нужно будет выплатить в случае, если работа была закончена после <tex>d_i</tex>. Необходимо минимизировать суммарный штраф, который придется выплатить.
 +
}}
 +
==Описание алгоритма==
  
==Описание алгоритма==
 
 
{{Утверждение
 
{{Утверждение
 
|statement=Существует оптимальное расписание, в котором каждая работа делается непрерывно.
 
|statement=Существует оптимальное расписание, в котором каждая работа делается непрерывно.

Версия 22:26, 2 июня 2015

[math]F \mid p_{ij} = 1 \mid \sum w_iu_i[/math]

Задача:
Дано [math]m[/math] станков, на которых нужно обработать [math]n[/math] деталей. Каждую деталь нужно обработать по очереди на всех станках. Любая работа на любом станке выполняется единицу времени. Для каждой работы есть дедлайн [math]d_i[/math] — время, до которого она должна быть закончена, и штраф [math]w_i[/math], который нужно будет выплатить в случае, если работа была закончена после [math]d_i[/math]. Необходимо минимизировать суммарный штраф, который придется выплатить.

Описание алгоритма

Утверждение:
Существует оптимальное расписание, в котором каждая работа делается непрерывно.
[math]\triangleright[/math]

Рассмотрим расписание, в котором есть работы, которые делаются не непрерывно. Рассмотрим самый ранний разрыв: работа [math]i[/math] делалась в моменты [math]t(i), t(i)+1, \ldots, t(i)+k[/math], где [math]k\lt m[/math], но не делалась в момент времени [math]t(i)+k+1[/math]. Докажем, что в момент времени [math]t(i)+k+1[/math], [math]k+1[/math]-й станок простаивает и можно продолжить делать [math]i[/math]-ю работу.

Пусть в момент времени [math]t(i)+k+1[/math] на [math]k+1[/math]-м станке делается работа [math]j[/math]. В [math]t(i)+k[/math]-й момент времени [math]k[/math]-й станок был занят выполнением [math]i[/math]-й работы, а значит, не мог выполнять [math]j[/math]-ю. Значит, разрыв был раньше, что противоречит тому, что был выбран самый ранний разрыв. Значит, в [math]t(i)+k+1[/math]-й момент [math]k+1[/math]-й станок свободен и туда можно поставить [math]i[/math]-ю работу, устранив разрыв.

После устранения каждого разрыва получим расписание без разрывов, в котором каждая работа заканчивает выполняться не позже, чем в изначальном.
[math]\triangleleft[/math]

По этому утверждению, если работу [math]i[/math] начали делать в [math]t(i)[/math], то закончена она будет в [math]t(i)+m[/math]. Найдем время [math]d'_i[/math] такое, что начав выполнять в него работу [math]i[/math], мы успеем выполнить ее до [math]d_i[/math]: [math]d'_i = d_i - m[/math]. Таким образом, вычтя из всех [math]d_i[/math] число [math]m[/math], мы свели задачу к [math]1 \mid p_i = 1 \mid \sum w_i U_i[/math].

Построив оптимальное расписание для [math]1 \mid p_i = 1 \mid \sum w_i U_i[/math], мы найдем времена, в которые нужно начинать выполнять работы. По утверждению выше, работы можно выполнять непрерывно.

Сложность алгоритма

Задача [math]F \mid p_{ij} = 1 \mid \sum w_iu_i[/math] за [math]O(n)[/math] сводится к задаче [math]1 \mid p_i = 1 \mid \sum w_iu_i[/math]. Задача [math]1 \mid p_i = 1 \mid \sum u_iw_i[/math] решается за [math]O(n \log n)[/math]. После решения этой задачи, нужно вывести ответ, имеющий размер [math]O(nm)[/math]. Значит, итоговая сложность алгоритма — [math]O(n \log n + nm)[/math].