K-связность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 34: Строка 34:
 
Отметим справедливость следующих высказываний:
 
Отметим справедливость следующих высказываний:
  
 
+
* Наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>. (См.[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для вершинной <tex>k - </tex> связности'']])
[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для вершинной <tex>k - </tex> связности'']]
 
 
 
Наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>.  
 
  
  
 
Тогда:
 
Тогда:
  
* Граф <tex> G </tex>  является '''<tex>k</tex> - вершинно связным ''' <tex>\Leftrightarrow </tex> любая пара его вершин соединена по крайней мере <tex>k</tex> вершинно непересекающимися путями.
+
{{Утверждение
 +
|statement=
 +
Граф <tex> G </tex>  является '''вершинно  <tex>k</tex> - связным ''' <tex>\Leftrightarrow </tex> любая пара его вершин соединена по крайней мере <tex>k</tex> вершинно непересекающимися путями.
 +
}}
  
 +
Подобные теоремы справедливы и для реберной связности. То есть:
  
Подобные теоремы справедливы и для реберной связности. Тогда:
+
* <tex>\lambda(G) = k</tex> <tex>\Leftrightarrow</tex>  для всех пар вершин <tex> u </tex> и <tex> v </tex> существует <tex>k</tex> реберно непересекающихся путей из <tex> u </tex> в <tex> v </tex>. (См.[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для реберной <tex>k - </tex> связности'']])
  
* Граф  <tex> G </tex> является '''<tex> l </tex> - реберно связным''' <tex>\Leftrightarrow </tex> любая пара его вершин соединена по крайней мере <tex> l </tex> - реберно непересекающимися путями.
 
  
 +
Отсюда следует, что:
 +
{{Утверждение
 +
|statement=
 +
Граф  <tex> G </tex> является '''реберно  <tex> l </tex> - связным''' <tex>\Leftrightarrow </tex> любая пара его вершин соединена по крайней мере <tex> l </tex> - реберно непересекающимися путями.
 +
}}
  
 
==Смотри также==
 
==Смотри также==

Версия 08:53, 3 ноября 2011

Связность - одна из топологических характеристик графа.

Определение:
Граф называется вершинно [math]k[/math] - связным, если удаление любых [math] (k - 1) [/math] вершин оставляет граф связным.


Вершинной связностью графа называется [math] \varkappa (G) = \max \{ k | G [/math] вершинно [math] k [/math] - связен [math] \} [/math].

Полный граф [math] \varkappa (K_n) = n - 1 [/math].


Определение:
Граф называется реберно [math] l [/math] - связным, если удаление любых [math] (l - 1) [/math] ребер оставляет граф связным.


Реберной связностью графа называется [math] \lambda(G) = \max \{ l | G [/math] реберно [math] l [/math] - связен [math] \} [/math]

При [math] n = 1, \lambda (K_1) = 0 [/math] .


Если граф [math]G [/math] имеет [math]n [/math] вершин и [math] \sigma (G) \ge \left [ \frac{n}{2} \right ] \quad [/math], то [math] \lambda (G) = \sigma (G) [/math], где [math] \sigma(G) [/math] - минимальная степень вершин графа [math] G [/math]


Рассмотрим граф [math] G [/math] .

Пусть [math] S [/math] - множество вершин/ребер/вершин и ребер.

Рассмотрим вершины [math] u [/math] и [math] v [/math].

[math] S [/math] разделяет [math] u [/math] и [math] v [/math], если [math] u [/math] и [math] v [/math] принадлежат разным компонентам связности графа [math] G \smallsetminus S [/math], который получается удалением элементов множества [math] S [/math] из [math] G [/math].


Отметим справедливость следующих высказываний:


Тогда:

Утверждение:
Граф [math] G [/math] является вершинно [math]k[/math] - связным [math]\Leftrightarrow [/math] любая пара его вершин соединена по крайней мере [math]k[/math] вершинно непересекающимися путями.

Подобные теоремы справедливы и для реберной связности. То есть:


Отсюда следует, что:

Утверждение:
Граф  [math] G [/math] является реберно [math] l [/math] - связным [math]\Leftrightarrow [/math] любая пара его вершин соединена по крайней мере [math] l [/math] - реберно непересекающимися путями.

Смотри также

Литература

  • Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
  • Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966