Редактирование: K-связность

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
<tex>k</tex>-cвязность {{---}} одна из топологических характеристик графа.
 
<tex>k</tex>-cвязность {{---}} одна из топологических характеристик графа.
 
{{Определение
 
{{Определение
|id=def_1
 
 
|definition=
 
|definition=
 
Граф называется '''вершинно  <tex>k</tex>-связным''', если удаление любых  <tex> (k  -  1) </tex>  вершин оставляет граф связным.
 
Граф называется '''вершинно  <tex>k</tex>-связным''', если удаление любых  <tex> (k  -  1) </tex>  вершин оставляет граф связным.
Строка 7: Строка 6:
  
 
[[Вершинная, реберная связность, связь между ними и минимальной степенью вершины|Вершинной связностью]] графа называется
 
[[Вершинная, реберная связность, связь между ними и минимальной степенью вершины|Вершинной связностью]] графа называется
<tex> \varkappa (G) = \max  \{ k \mid G </tex> вершинно  <tex>k</tex>-связен  <tex> \} </tex>, при этом для полного графа полагаем <tex> \varkappa (K_n) = n - 1 </tex>.
+
<tex> \varkappa (G) = \max  \{ k G </tex> вершинно  <tex>k</tex>-связен  <tex> \} </tex>, при этом для полного графа полагаем <tex> \varkappa (K_n) = n - 1 </tex>.
  
 
{{Определение
 
{{Определение
|id=def_2
 
 
|definition=
 
|definition=
 
Граф называется '''реберно <tex>l</tex>-связным''', если удаление любых <tex> (l - 1) </tex> ребер оставляет граф связным.  
 
Граф называется '''реберно <tex>l</tex>-связным''', если удаление любых <tex> (l - 1) </tex> ребер оставляет граф связным.  
 
}}
 
}}
  
[[Вершинная, реберная связность, связь между ними и минимальной степенью вершины|Реберной связностью]] графа называется <tex> \lambda(G) = \max \{ l \mid G </tex> реберно <tex>l</tex>-связен <tex> \} </tex>, для тривиального графа считаем <tex> \lambda (K_1) = 0 </tex>.  
+
[[Вершинная, реберная связность, связь между ними и минимальной степенью вершины|Реберной связностью]] графа называется <tex> \lambda(G) = \max \{ l | G </tex> реберно <tex>l</tex>-связен <tex> \} </tex>, для тривиального графа считаем <tex> \lambda (K_1) = 0 </tex>.  
  
  
Строка 24: Строка 22:
 
Пусть <tex> S </tex> {{---}} множество вершин/ребер/вершин и ребер.
 
Пусть <tex> S </tex> {{---}} множество вершин/ребер/вершин и ребер.
  
<tex> S </tex> разделяет <tex> u </tex> и <tex> v </tex>, если <tex> u </tex> и <tex> v </tex> принадлежат разным компонентам связности графа <tex> G \setminus S </tex>, который получается удалением элементов множества <tex> S </tex> из <tex> G </tex>.
+
<tex> S </tex> разделяет <tex> u </tex> и <tex> v </tex>, если <tex> u </tex> и <tex> v </tex> принадлежат разным компонентам связности графа <tex> G \smallsetminus S </tex>, который получается удалением элементов множества <tex> S </tex> из <tex> G </tex>.
  
 
Из теоремы [[Теорема Менгера, альтернативное доказательство|теоремы Менгера для вершинной <tex>k</tex>-связности]] имеем, что наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>.
 
Из теоремы [[Теорема Менгера, альтернативное доказательство|теоремы Менгера для вершинной <tex>k</tex>-связности]] имеем, что наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>.
Строка 42: Строка 40:
 
}}
 
}}
  
==См. также==
+
==Смотри также==
 
* [[Теорема Менгера]]
 
* [[Теорема Менгера]]
 
* [[Теорема Менгера, альтернативное доказательство]]
 
* [[Теорема Менгера, альтернативное доказательство]]
 +
==Литература==
  
==Источники информации==
+
* Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
  
* Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
 
 
* Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966
 
* Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Связность в графах]]
 
[[Категория:Связность в графах]]
 
{{Заголовок со строчной буквы}}
 
{{Заголовок со строчной буквы}}

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)