Изменения

Перейти к: навигация, поиск

L 2-теория рядов Фурье

2293 байта добавлено, 19:24, 26 января 2014
Нет описания правки
Эта операция обладает свойствами скалярного произведения:
* <tex>\langle f; f \rangle \le ge 0</tex> и <tex>\langle f; f\rangle = 0 \iff f = 0</tex> почти всюду
* Линейность. <tex>\langle \alpha f_1 + \beta f_2 , g \rangle = \alpha\langle f_1, g \rangle + \beta \langle f_2, g\rangle</tex>
* Симметричность. <tex>\langle f, g\rangle = \langle g, f \rangle</tex>
<tex>\sum\limits_{j=1}^\infty \alpha_je_j</tex> в <tex>\mathcal{H}</tex> ортогональна: <tex>i\ne j \Rightarrow \langle \alpha_1 e_i, \alpha_2 e_j \rangle</tex> = 0
 
{{Определение
|definition=
Ряд <tex> \sum\limits_{k = 1}^{\infty} x_k </tex> является '''ортогональным''', если <tex> \forall n \ne m \Rightarrow (x_n, x_m) = 0 </tex>.
}}
{{Теорема
Пусть <tex>\sum\limits_{j=1}^\infty a_j</tex> {{---}} ортогональный ряд. Он сходится тогда и только тогда, когда <tex>\sum\limits_{j=1}^\infty \|a_j\|^2</tex> сходится. Если <tex>\sum\limits_{j=1}^{\infty} a_j = a</tex>, то <tex>\sum\limits_{j=1}^\infty \|a_j\|^2 = \|a\|^2 </tex>.
|proof=
Возьмём <tex>A_n = \sum\limits_{j=1}^n a_j</tex>. По определению, сходимость ряда <tex>A_n\sum\limits_{j=1}^{\infty} a_j</tex> равносильна существованию предела <tex>A_n</tex>. Так как пространство {{---}} Гильбертово, то есть полное, значит сходимость равносильна сходимости <tex>A_n</tex> в себе. Значит, <tex>\lim\limits_{n, m \to \infty} A_n - A_m \to = 0 \iff </tex>, что равносильно <tex> \|A_n - A_m\| \to 0 </tex>.
Пусть <tex> m > n </tex>. <tex>A_m - A_n = \sum\limits_{j=n+1}^m a_j</tex>.
По критерию Коши сходимости числовых рядов <tex>\sum\limits_{j=n+1}^m \|a_j\|^2 \to 0 \iff \sum\limits_{j=1}^{\infty} \| a_j \|^2 < \infty</tex>
Итак, мы установили, что сходимость ортогонального ряда <tex>\sum\limits_{j=1}^\infty a_j</tex> равносильна сходимости <tex>\sum\limits_{j=1}^\infty \|a_j\|^2</tex>. <tex>a = \sum\limits_{j=1}^\infty a_j \Rightarrow \langle a, a \rangle = \langle \sum\limits_{j=1}^\infty a_j, \sum\limits_{j=1}^\infty a_j \rangle \Rightarrow \| a \| ^2 = \sum\limits_{j=1}^{\infty} \| a_j \|^2</tex>
}}
То есть, если <tex>x</tex> разлагается по ортогональной системе, то необходимо <tex>\alpha_j = \langle x, e_j\rangle</tex> {{---}} коэффициент Фурье.
Центральную роль играет изучение ортогональных рядов вида <tex>\sum\limits_{j=1}^\infty \langle x, e_j\rangle e_j</tex>, <tex>x \in \mathcal{H}</tex>. Такие ряды называются '''абстрактными рядами Фурье'''.
В применении к <tex>L_2</tex>: <tex>f \in L_2</tex>, <tex>\langle f, \frac1{\sqrt\pi} \cos nx\rangle =\int\limits_Q f(x) \frac{1}{\sqrt \pi} \cos nx dx = \sqrt\pi \left(\frac1\pi \int\limits_Q f(x) \cos nx dx\right) = \sqrt\pi a_n(f)</tex>
Аналогично, для синусов: <tex>\langle f, \frac1{\sqrt\pi } \sin nx\rangle = \sqrt\pi b_n(f)</tex>
<tex>\langle f, \frac1{\sqrt{2\pi}}\rangle = \sqrt{\frac\pi2} a_0(f)</tex>
Тогда, получается: <tex>\sum\limits_{j=0}^\infty \langle f, e_j\rangle e_j = </tex> (из того, что <tex>L_2</tex>) <tex>\sqrt{\frac\pi2} a_0(f) \cdot \frac{1}{\sqrt{2 \pi}} + \sum\limits_{n=1}^\infty(\sqrt\pi a_n(f)\cdot \frac{\cos nx }{\sqrt \pi} + \sqrt\pi b_n(f) \cdot \frac{\sin nx}{\sqrt \pi} ) </tex> <tex> = \frac{a_0(f)}{2} + \sum\limits_{n = 1}^{\infty} a_0( a_n(f) \cos nx + b_0b_n(f) \sin nx)</tex>, то есть, абстрактный ряд Фурье совпадает с классическим.
Применим то, что было сказано выше: <tex>\sum\limits_{j=1}^\infty \langle f, e_j \rangle = \alpha_j</tex> будет сходиться в <tex>L_2</tex> <tex>\iff</tex> сходится ояд ряд <tex>\sum\limits_{jn=1}^\infty (a_n^2(f) + b_n^2(f))</tex> (забиваем на множитель и одно слагаемое).
== Теорема Рисса-Фишера ==
}}
Легко установить экстремальное свойство частичных сумм:.
<tex>x = \sum\limits_{j{Утверждение|statement =1}^\infty c_ne_n</tex>, Пусть <tex>x\in\mathcal{H}</tex>, <tex>\sum\limits_{j=1}^\infty \langle x, e_j\rangle e_j</tex>(причем он может быть расходящимся), <tex>s_n(x) = \sum\limits_{j=1}^n \langle x, e_j\rangle e_j</tex> Экстремальное свойствотогда: <tex>\|x-s_n(x)\|^2 = \inf \|x - \sum\limits_{k=1}^n \alpha_ke_k\|^2</tex>, <tex>\alpha_k \in \mathbb{R}</tex>|proof = Можно сказать, что <tex>x</tex> раскладывается на сумму двух ортогональных друг другу компонент, причем одна из них равна <tex>\sum\limits_{j=1}^\infty \langle x, e_j \rangle</tex>, а вторая {{---}} все остальное. Тогда при взятии <tex>\|x - S_n\|</tex> из первого слагаемого будут целиком выкинуты первые <tex>n</tex> его составляющих, и понятно, что это будет указанным <tex>inf</tex>.}}
Из него получается [[Нормированные_пространства#теорема Бесселя|неравенство Бесселя]]: <tex>\sum\limits_{j=1}^\infty \langle x, e_j\rangle^2 \le \|x\|^2</tex>, которое можно доказать аналогичным рассуждением.
Раз ряд состоит из квадратов коэффициентов Фурье, то он всегда сходится. В любом случае, ряд Фурье будет сходиться в <tex>\mathcal{H}</tex>.
Для того, чтобы сгладить последствия этого, используют только ОНС со следующими дополнительными свойствами:
# ОНС {{---}} замкнутаполная: (<tex>\forall j : \langle x, e_j\rangle = 0 ) \Rightarrow x = 0</tex>.# ОНС {{---}} полнаязамкнутая: <tex>\operatorname{Cl} \mathcal{L}(e_1, \ldots, e_n, \ldots) = \mathcal{H}</tex> (замыкание линейной оболочки совпадает с самим пространством).
{{Теорема
<tex>\Rightarrow</tex> Пусть ОНС {{---}} полная
<tex>x \in \mathcal{H}</tex>, <tex>\forall j: \langle x, e_j\rangle = 0</tex>. В силу полноты системы, <tex>\forall \varepsilon > 0 : \exists n \exists \sum\limits_{k=1}^n \alpha_k e_k : \|x - \sum\limits_{k=1}^n \alpha_k e_k\| < \varepsilon</tex>
Но частичная сумма ряда Фурье обладает экстремальным свойством:
Значит, из полноты вытекает замкнутость.
<tex>\Leftarrow</tex> Пусть система замкнута. <tex>\forall x \in \mathcal{H} : \sum\limits_{n=1}^\infty |\langle x, e_n\rangle|^2 < +\infty</tex>(по сказанному ранее). По теореме Рисса-Фишера, <tex>\exists y = \sum\limits_{k=1}^\infty \langle x, e_k\rangle e_k</tex>.
По свойствам ортогональных рядов, <tex>\langle y, e_k\rangle = \langle x, e_k\rangle</tex> <tex>\Rightarrow</tex> <tex>\langle y - x, e_k\rangle =0</tex>.
{{Теорема
|statement=<tex>f \in L_2</tex> <tex>\Rightarrow</tex> функция <tex>f</tex> разлагается в ряд Фурье по метрике <tex>L_2</tex>.
|proof=Возьмем ОНС <tex>1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots</tex>. Заметим, что если мы докажем полноту этой системы, это приведет нас к доказательству теоремы. Вместо доказательства полноты докажем замкнутость. Пусть есть <tex>x \in H</tex>, для которого <tex> \forall k : \langle x, e_j \rangle = 0</tex>. В этом случае все коэффициенты ряда Фурье равны <tex>0</tex>. Значит, суммы Фейера также сходятся к <tex>0</tex>, а тогда, по теореме Фейера, сама функция тоже равна <tex>0</tex>.
}}
{{Утверждение
|author=ПерсевальПарсеваль|statement=<tex>x, y \in \mathcal{H} \Rightarrow \langle x, y\rangle = \sum\limits_{j=1}^\infty \langle x, e_j\rangle \cdot \langle y, e_j\rangle</tex>.
}}
С другой стороны, экстремальное свойство частичных сумм показывает, что:
<tex>\|x-s_n(x)\| ^2 = E_n^2(x)_n</tex>
Итого: <tex>E_n^2(x)_n = \sum\limits_{k=n+1}^\infty |\langle x, e_k\rangle|^2</tex>
В <tex>L_2</tex>: <tex>E_n^2(x)_n = \pi\sum\limits_{k=n+1}^\infty (a_k^2(f) + b_k^2(f)) </tex>.
Финально: последнее равенство показывает исключительный характер <tex>L_2</tex>: в нём наилучшее приближение вычисляется точно с указанием экстремального полинома<tex>\sum\limits_{j=1}^{n} \langle x, e_j \rangle e_j</tex>.
[[О почленном интегрировании ряда Фурье|<<]][[Теорема Лузина-Данжуа|>>]]
[[Категория:Математический анализ 2 курс]]

Навигация