Изменения

Перейти к: навигация, поиск

M-сводимость

4746 байт добавлено, 01:53, 20 декабря 2017
Сведение по Тьюрингу
{{Определение
|definition=Множество <tex>A</tex> '''<tex>\textbf m</tex>-сводится''' (англ. ''many-one reducible'', ''m-reducible'') ко множеству <tex>B</tex>, если существует всюду определённая [[Вычислимые функции|вычислимая функция ]] <tex>f : x\in A\Leftrightarrow f(x)\in B</tex>, то есть <tex>f(A) \subset B</tex> и <tex>f(\overline{A}) \subset \overline{B}</tex>. Обозначение: <tex>A\le_leqslant_{m}B</tex>.
}}
{{Определение
|definition=<tex>A</tex> '''<tex>\textbf m</tex>-эквивалентно''' (англ. ''many-one equivalent'', ''m-equivalent'') <tex>B</tex>, если <tex>A\le_leqslant_{m}B</tex> и <tex>B\le_leqslant_{m}A</tex>. Обозначение: <tex>A\equiv_{m}B</tex>.
}}
== Свойства ==
# {{Утверждение|about=рефлексивность|statement=<tex>A\le_leqslant_{m}A</tex>.#*'''Доказательство:''' |proof=<tex>f(x)=x</tex>.# }} {{Утверждение|about=разрешимость|statement=Если <tex>A\le_leqslant_{m}B</tex> и <tex>B</tex> разрешимо, то <tex>A</tex> разрешимо.#*'''Доказательство:''' |proof=Пусть <tex>p</tex> — программа-разрешитель для <tex>B</tex>. Тогда для любого <tex>x\in A</tex> разрешитель должен вернуть значение <tex>p(f(x))</tex>.# }} {{Утверждение|about=перечислимость|statement=Если <tex>A\le_leqslant_{m}B</tex> и <tex>B</tex> перечислимо, то <tex>A</tex> перечислимо.#*'''Доказательство:''' |proof=Аналогично предыдущему свойству.# }} {{Утверждение|about=транзитивность|statement=Если <tex>A\le_leqslant_{m}B</tex> и <tex>B\le_leqslant_{m}C</tex>, то <tex>A\le_leqslant_{m}C</tex>.#*'''Доказательство:''' |proof=Если <tex>f:A\to B</tex> и <tex>g:B\to C</tex>, то <tex>m</tex>-сводящая функция <tex>h:A\to C</tex> выглядит так <tex>h(x) = g(f(x))</tex>.}}
== Применение ==
{{Лемма
|statement=
Если <tex>A\le_leqslant_{m}B</tex> и <tex>A</tex> неразрешимо, то <tex>B</tex> неразрешимо.
|proof=
Следует из второго свойства.
Приведённая лемма позволяет доказывать алгоритмическую неразрешимость некоторой задачи, сводя к ней ''(а не наоборот!)'' другую, неразрешимость которой уже доказана.
Например:===Примеры применения===* [[{{main|Примеры неразрешимых задач: проблема соответствий Поста|неразрешимость проблемы соответствий Поста]]Примеры неразрешимых задач: задача о замощении}} ==Сведение по Тьюрингу=={{Определение|definition=Язык <tex>L</tex> '''сводится по Тьюрингу''' (англ. ''Turing reducible'') к языку <tex>M</tex>, если язык <tex>L</tex> является разрешимым с использованием <tex>M</tex> как оракула, обозначается как <tex>L \leqslant_T M</tex>.}} {{Определение|definition=Язык <tex>L</tex> '''эквивалентен по Тьюрингу''' (англ. ''Turing equivalent'') языку <tex>M</tex>, если <tex>L \leqslant_T M</tex> и <tex>M \leqslant_T L</tex>, обозначается как <tex>L \equiv_T M</tex>.}}
== Литература = Т-степени === Обозначим за <tex>\mathcal{D}_T</tex> множество классов эквивалентности языков по отношению <tex>\equiv_T</tex>, это множество будет множеством <tex>T</tex>-степеней (тьюринговых степеней). {{Определение|definition='''<tex>T</tex>-степенью языка <tex>L</tex>''' (англ. ''Turing degree'') называется его класс эквивалентности по отношению <tex>\equiv_T</tex>, то есть <tex>\mathrm{deg}_T(L) = \{ M \mid L \equiv_T M \}</tex>.}} На <tex>T</tex>-степенях можно ввести частичный порядок: для <tex>d_1, d_2 \in \mathcal{D}_T, d_1 \leqslant d_2</tex>, если для каких-то <tex>L \in d_1, M \in d_2: L \leqslant_T M</tex>, определение корректно, так как порядок не будет зависеть от выбора представителя <tex>T</tex>-степени. ==== Свойства ====* <tex>\mathrm{R}</tex> — минимальный элемент в частичном порядке на <tex>T</tex>-степенях. Очевидно из того, что класс разрешимых языков замкнут по использованию разрешимого языка в качестве оракула.* Любая пара <tex>T</tex>-степеней <tex>d_1, d_2 \in \mathcal{D}_T</tex> имеет наименьшую верхнюю границу <tex>d_1 \lor d_2 \in \mathcal{D}_T</tex>. ==== Тьюринговый скачок ====Обозначим за <tex>H</tex> язык программ, останавливающихся на пустом входе. Обозначим за <tex>H^f</tex> язык программ, использующих <tex>f</tex> в качестве оракула и останавливающихся на пустом входе. Можно показать, что: * <tex>f <_T H^f</tex> * Если <tex>f \leqslant_T g</tex>, то <tex>H^f \leqslant_T H^g</tex> {{Определение|definition= '''Тьюринговым скачком <tex>T</tex>-степени <tex>d</tex>''' (англ. ''Turing jump'') называется <tex>T</tex>-степень языка <tex>H^L</tex>, где <tex>L</tex> — произвольный язык в <tex>d</tex>.}}  Заметим, что если <tex>L \equiv_T M</tex>, то <tex>H^L \equiv_T H^M</tex>, поэтому определение корректно. Оператор тьюрингова скачка обозначим как <tex>J : \mathcal{D}_T \to \mathcal{D}_T</tex>. == См. также ==* [[Примеры неразрешимых задач: задача о выводе в полусистеме Туэ| Задача о выводе в полусистеме Туэ]]* [[Примеры неразрешимых задач: проблема соответствий Поста | Проблема соответствий Поста]]* [[Примеры неразрешимых задач: задача о замощении | Задача о замощении]]* [[Неразрешимость исчисления предикатов первого порядка]] == Источники информации ==
* [http://en.wikipedia.org/wiki/Many-one_reduction Wikipedia — Many-one reduction]
* [http://en.wikipedia.org/wiki/Turing_reduction Wikipedia — Turing reduction]
* [http://www.personal.psu.edu/t20/notes/topics-s05.pdf Topics in Logic and Foundations]* ''Верещагин Н., Шень А.'' — '''Вычислимые функции''', 2-е изд. МЦНМО, 2002, стр. — С. 64. ISBN 5-900916-36-7* ''P. Odifreddi'' — '''Classical recursion theory'''. Elsivier, 1992. ISBN 0-444-87295-7
{{Заголовок со строчной буквы}}
 
[[Категория: Теория формальных языков]]
[[Категория: Теория вычислимости]]
[[Категория: Примеры неразрешимых задач]]
Анонимный участник

Навигация