NP-полнота задачи о независимом множестве — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(создание странички)
 
м
Строка 10: Строка 10:
 
Пусть задана булева формула в <math>3-SAT</math>, в которой <math>k</math> скобок. Построим для нее соответствующий граф. Для каждой скобки нарисуем три вершины, соединим их попарно ребрами и подпишем их именами соответствующих переменных. Так же соединим ребрами пары вершин вида <math>x,\overline{x}</math>.
 
Пусть задана булева формула в <math>3-SAT</math>, в которой <math>k</math> скобок. Построим для нее соответствующий граф. Для каждой скобки нарисуем три вершины, соединим их попарно ребрами и подпишем их именами соответствующих переменных. Так же соединим ребрами пары вершин вида <math>x,\overline{x}</math>.
  
<math>(\overline{x}\lor y\lor z)\land (x \lor y \lor \overline{z}) \to</math>[[Файл:Example.jpg]]
+
<math>(\overline{x}\lor y\lor z)\land (x \lor y \lor \overline{z}) \to</math>[[Файл:IND_GRAPH.png]]
  
 
Докажем, что формула выполнима тогда и только тогда, когда в соответствующем графе есть независимое множество из <math>k</math> вершин. Пусть формула выполнима, тогда в каждой скобке есть хотя бы одна переменная, принимающая значение “правда”. Выберем соответствующую переменную в качестве вершины в графе. Выбранное множество вершин является независимым, так как ребрами соединены только вершины, которые соответствуют переменным из одной скобки(а мы выбирали только одну переменную из каждой скобки) и пары вершин, которым советуют пары переменных вида <math>x,\overline{x}</math>, которые не могут одновременно принимать значение “правда”. Пусть в графе есть независимое множество, размера <math>k</math>. Тогда в каждой тройке вершин, соответствующих некоторой скобке, выбрана ровно одна вершина. Установим значение соответствующей переменной “правда”. Тогда в каждой скобке, будет хотя бы одна переменная, имеющая значение “правда”, значит вся формула будет принимать значение “правда”. Построение по формуле соответствующего графа можно сделать за полиномиальное время.
 
Докажем, что формула выполнима тогда и только тогда, когда в соответствующем графе есть независимое множество из <math>k</math> вершин. Пусть формула выполнима, тогда в каждой скобке есть хотя бы одна переменная, принимающая значение “правда”. Выберем соответствующую переменную в качестве вершины в графе. Выбранное множество вершин является независимым, так как ребрами соединены только вершины, которые соответствуют переменным из одной скобки(а мы выбирали только одну переменную из каждой скобки) и пары вершин, которым советуют пары переменных вида <math>x,\overline{x}</math>, которые не могут одновременно принимать значение “правда”. Пусть в графе есть независимое множество, размера <math>k</math>. Тогда в каждой тройке вершин, соответствующих некоторой скобке, выбрана ровно одна вершина. Установим значение соответствующей переменной “правда”. Тогда в каждой скобке, будет хотя бы одна переменная, имеющая значение “правда”, значит вся формула будет принимать значение “правда”. Построение по формуле соответствующего графа можно сделать за полиномиальное время.
 +
 
===Задача о независимом множестве принадлежит классу NP===
 
===Задача о независимом множестве принадлежит классу NP===
 
В качестве сертификата возьмем набор из <math>k</math> вершин. За время <math>O(k^2)</math> можно проверить, является ли данное множество вершин независимым.
 
В качестве сертификата возьмем набор из <math>k</math> вершин. За время <math>O(k^2)</math> можно проверить, является ли данное множество вершин независимым.

Версия 18:49, 13 марта 2010

Формулировка

Пусть задан неориентированный граф [math]G[/math] и натуральное число [math]k[/math]. Задача о независимом множестве(IND) решает вопрос о том, содержит ли граф [math]G[/math] подграф [math]H[/math] размером [math]k[/math], никакая пара вершин в котором не соединена ребром.

Доказательство NP-полноты

Для доказательства NP-полноты задачи о независимом множестве покажем, что она является NP-трудной и принадлежит классу NP.

Задача о независимом множестве является NP-трудной

Для доказательства этого сведем задачу [math]3-SAT[/math] к нашей:

[math]3-SAT \le IND[/math]

Пусть задана булева формула в [math]3-SAT[/math], в которой [math]k[/math] скобок. Построим для нее соответствующий граф. Для каждой скобки нарисуем три вершины, соединим их попарно ребрами и подпишем их именами соответствующих переменных. Так же соединим ребрами пары вершин вида [math]x,\overline{x}[/math].

[math](\overline{x}\lor y\lor z)\land (x \lor y \lor \overline{z}) \to[/math]IND GRAPH.png

Докажем, что формула выполнима тогда и только тогда, когда в соответствующем графе есть независимое множество из [math]k[/math] вершин. Пусть формула выполнима, тогда в каждой скобке есть хотя бы одна переменная, принимающая значение “правда”. Выберем соответствующую переменную в качестве вершины в графе. Выбранное множество вершин является независимым, так как ребрами соединены только вершины, которые соответствуют переменным из одной скобки(а мы выбирали только одну переменную из каждой скобки) и пары вершин, которым советуют пары переменных вида [math]x,\overline{x}[/math], которые не могут одновременно принимать значение “правда”. Пусть в графе есть независимое множество, размера [math]k[/math]. Тогда в каждой тройке вершин, соответствующих некоторой скобке, выбрана ровно одна вершина. Установим значение соответствующей переменной “правда”. Тогда в каждой скобке, будет хотя бы одна переменная, имеющая значение “правда”, значит вся формула будет принимать значение “правда”. Построение по формуле соответствующего графа можно сделать за полиномиальное время.

Задача о независимом множестве принадлежит классу NP

В качестве сертификата возьмем набор из [math]k[/math] вершин. За время [math]O(k^2)[/math] можно проверить, является ли данное множество вершин независимым.