NP-полнота задачи BH1N — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
==Определение языка BH<sub>1N</sub>==  
 
==Определение языка BH<sub>1N</sub>==  
 
Языком '''BH<sub>1N</sub>''' (от англ. bounded halting unary) называется множество троек <tex>\langle m, x, 1^{t} \rangle</tex>, где <tex>m</tex> - недетерминированная машина Тьюринга (НМТ), <tex>x</tex> - входные данные и <tex>t</tex> - время в унарной системе счисления, таких, что <tex>m(x)=1</tex> и время работы машины <tex>m</tex> на входе <tex>x</tex> <tex>T(m, x)\le t</tex>:
 
Языком '''BH<sub>1N</sub>''' (от англ. bounded halting unary) называется множество троек <tex>\langle m, x, 1^{t} \rangle</tex>, где <tex>m</tex> - недетерминированная машина Тьюринга (НМТ), <tex>x</tex> - входные данные и <tex>t</tex> - время в унарной системе счисления, таких, что <tex>m(x)=1</tex> и время работы машины <tex>m</tex> на входе <tex>x</tex> <tex>T(m, x)\le t</tex>:

Текущая версия на 19:14, 4 сентября 2022

Определение языка BH1N

Языком BH1N (от англ. bounded halting unary) называется множество троек [math]\langle m, x, 1^{t} \rangle[/math], где [math]m[/math] - недетерминированная машина Тьюринга (НМТ), [math]x[/math] - входные данные и [math]t[/math] - время в унарной системе счисления, таких, что [math]m(x)=1[/math] и время работы машины [math]m[/math] на входе [math]x[/math] [math]T(m, x)\le t[/math]:

BH1N = [math]\{ \langle m, x, 1^{t} \rangle | m [/math] — НМТ, [math] m(x)=1, T(m, x)\le t \}[/math].

Также можно рассматривать языки BH1D, BH2N, BH2D, отличающиеся от BH1N только детерминированностью машин Тьюринга (D - детерминированная, N - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная).

Теорема

Язык BH1N является NP-полным: BH1NNPC.

Доказательство

Для того, чтобы доказать NP-полноту BH1N необходимо установить следующие факты:

  1. BH1NNP;
  2. BH1NNPH.

Доказательство принадлежности BH1N классу NP

Будем использовать в качестве сертификата [math]y[/math] последовательность недетерминированных выборов, которые должна сделать машина [math]m[/math], чтобы допустить слово [math]x[/math]. Длина сертификата меньше, чем [math]Ct[/math] для некоторого [math]C[/math].

Для проверки сертификата используется программа [math]R(\langle m, x, 1^{t}\rangle, y)[/math], эмулирующая работу недетерминированной машины Тьюринга [math]m[/math] на слове [math]x[/math]. Там, где у машины [math]m[/math] было несколько выборов, [math]R[/math] совершает действие согласно сертификату. При этом замеряется время работы машины [math]t[/math]. Проверяющая программа может проэмулировать [math]m[/math], затратив полиномиальное количество времени.

Если НМТ [math]m[/math] допускает слово [math]x[/math] за время [math]t[/math], то существует последовательность действий, которые совершает машина [math]m[/math], среди которых могут быть и недетерминированные. Следовательно, существует сертификат [math]y[/math]. Если же слово не допускается или допускается, но за время, большее [math]t[/math], то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина [math]m[/math].

Все условия принадлежности классу NP выполнены.

Доказательство принадлежности BH1N классу NPH

Теперь докажем, что BH1N принадлежит классу NPH. Рассмотрим произвольный язык [math]L[/math] из класса NP. Для него существует машина Тьюринга [math]m[/math], такая что [math]T(m, x)\le p(|x|), L(m) = L[/math]. Докажем, что [math]L[/math] сводится по Карпу к BH1N. Рассмотрим функцию [math]f(x) = \langle m, x, 1^{p(|x|)}\rangle[/math] по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени [math]p(|x|)[/math] в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что [math]x \in L \Leftrightarrow f(x)[/math]BH1N.

Пусть [math]x \in L[/math]. Тогда [math]m(x) = 1[/math]. Время работы [math]m[/math] не больше [math]p(|x|)[/math], а значит слово [math]x[/math] будет допущено машиной [math]m[/math] за время не больше, чем [math]p(|x|)[/math]. А тогда тройка [math]\langle m,x, 1^{p(|x|)}\rangle = f(x)[/math] будет входить в BH1N согласно его определению. Пусть [math]x \not\in L[/math]. Тогда [math]m(x) = 0[/math]. Но тогда тройка [math]\langle m, x, 1^{t}\rangle[/math] не принадлежит BH1N при любом [math]t[/math], а значит и при [math]t = p(|x|)[/math].

Значит произвольный язык из класса NP сводится по Карпу к BH1N, то есть BH1NNPC. Что и требовалось доказать.