Редактирование: Opij1SumTi

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 66: Строка 66:
 
{{Теорема
 
{{Теорема
 
|statement=Алгоритм строит оптимальное расписание для задачи <tex> O \mid p_{i,j} = 1 \mid \sum T_{i} </tex>
 
|statement=Алгоритм строит оптимальное расписание для задачи <tex> O \mid p_{i,j} = 1 \mid \sum T_{i} </tex>
|proof= Воспользуемся для доказательства леммой и теоремой из предыдущего пункта. Из них мы знаем, что существует оптимальное расписание, для которого выполняются свойства <tex>C_1 \leqslant C_2 \leqslant \ldots \leqslant C_n</tex> и <tex>C_i \leqslant m + i - 1</tex> для любого <tex>i = 1 \ldots n</tex>, где <tex>m</tex> {{---}} число станков. Пусть <tex>B</tex> {{---}} оптимальное расписание, которое удовлетворяет свойству, по которому работы <tex>1 \ldots k - 1 </tex> поставлены в те же временные промежутки, в которых они оказались следуя нашему расписанию <tex>A</tex>. Более того, предположим, что <tex>B</tex> было выбрано так, что <tex>k</tex> максимально.
+
|proof= Воспользуемся для доказательства леммой и теоремой, которые были доказаны выше. Из них мы знаем, что существует оптимальное расписание, для которого выполняются свойства <tex>C_1 \leqslant C_2 \leqslant \ldots \leqslant C_n</tex> и <tex>C_i \leqslant m + i - 1</tex> для любого <tex>i = 1 \ldots n</tex>, где <tex>m</tex> {{---}} число станков. Пусть <tex>B</tex> {{---}} оптимальное расписание, которое удовлетворяет свойству, по которому работы <tex>1 \ldots k - 1 </tex> поставлены в те же временные промежутки, в которых они оказались следуя нашему расписанию <tex>A</tex>. Более того, предположим, что <tex>B</tex> было выбрано так, что <tex>k</tex> максимально.
 
Пусть <tex>C_k > T_k</tex>. С того момента, как работа <tex>k</tex> поставлена в расписании <tex>A</tex> перед <tex>T_k</tex>, определим временной промежуток <tex>t \leqslant T_k </tex> в месте, где работа <tex>k</tex> не выполняется в <tex>B</tex>. Тогда в самом расписании <tex>B</tex> этот промежуток либо так же пустой, либо он занят работой <tex>r > k</tex>.  
 
Пусть <tex>C_k > T_k</tex>. С того момента, как работа <tex>k</tex> поставлена в расписании <tex>A</tex> перед <tex>T_k</tex>, определим временной промежуток <tex>t \leqslant T_k </tex> в месте, где работа <tex>k</tex> не выполняется в <tex>B</tex>. Тогда в самом расписании <tex>B</tex> этот промежуток либо так же пустой, либо он занят работой <tex>r > k</tex>.  
 
* Если он пустой, мы перемещаем операцию <tex>k</tex>, которая была распределена в промежуток <tex>C_k</tex>, в этот промежуток.  
 
* Если он пустой, мы перемещаем операцию <tex>k</tex>, которая была распределена в промежуток <tex>C_k</tex>, в этот промежуток.  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)