PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 18: Строка 18:
 
|about=2
 
|about=2
 
|statement=<tex> \forall L \in PS , L \leq_p TQBF</tex>
 
|statement=<tex> \forall L \in PS , L \leq_p TQBF</tex>
|proof=Рассмотрим какой-то язык <tex>L \in PSPACE</tex>. Построим функцию <tex>f \colon \forall x \in L \Leftrightarrow f(x) \in TQBF</tex>.
+
|proof=Рассмотрим какой-то язык <tex>L \in PSPACE</tex>.  
 +
Построим функцию <tex>f \colon \forall x \in L \Leftrightarrow f(x) \in TQBF</tex>.
 
Так как <tex>L \in PSPACE</tex>, то существует какая-то детерминированная машина Тьюринга <tex>M</tex>, которая его распознаёт за полиномиальное от размера входа время.
 
Так как <tex>L \in PSPACE</tex>, то существует какая-то детерминированная машина Тьюринга <tex>M</tex>, которая его распознаёт за полиномиальное от размера входа время.
 
Пусть <tex>I</tex> — мгновенное описание <tex>M</tex>, тогда выражение <tex>\exists I</tex> обозначает <tex> (\exists x_1) (\exists x_2)\cdots(\exists x_n)</tex>, где <tex>\{x_i\}</tex> — все переменные мгновенного описания <tex>M</tex>. Аналогично выражение <tex> \forall I</tex> обозначает <tex> (\forall x_1) (\forall x_2)\dots(\forall x_n)</tex>. Теперь рассмотрим два мгновенных описание <tex>M: A</tex> и <tex>B</tex>. Напишем рекурсивную функцию <tex>\phi(A, B, t)</tex>, которая будет переводить утверждение <tex>A\vdash^tB</tex> в TQBF за полиномиальное относительно длины входа время.  
 
Пусть <tex>I</tex> — мгновенное описание <tex>M</tex>, тогда выражение <tex>\exists I</tex> обозначает <tex> (\exists x_1) (\exists x_2)\cdots(\exists x_n)</tex>, где <tex>\{x_i\}</tex> — все переменные мгновенного описания <tex>M</tex>. Аналогично выражение <tex> \forall I</tex> обозначает <tex> (\forall x_1) (\forall x_2)\dots(\forall x_n)</tex>. Теперь рассмотрим два мгновенных описание <tex>M: A</tex> и <tex>B</tex>. Напишем рекурсивную функцию <tex>\phi(A, B, t)</tex>, которая будет переводить утверждение <tex>A\vdash^tB</tex> в TQBF за полиномиальное относительно длины входа время.  
  
<tex>\phi(A, B, t) = \\ (\exists R) (\forall U) (\forall V) \ \{\phi(U, V, t/2) \lor [\neg(A = U \land B = R) \land \neg(A = R \land B = V)]\}</tex>  
+
<tex>\phi(A, B, t) = \\ (\exists R) (\forall U) (\forall V) \ \{\phi(U, V, t/2) \lor [\neg(A = U \land R = V) \land \neg(R = U \land B = V)]\}</tex>
 
+
:Переменые <tex> U </tex> и <tex>V</tex> важны только как пары <tex> (A, R)</tex> и <tex>(R, B)</tex>, поэтому для всех остальных вариантов выражение <tex>[\neg(A = U \land R = V) \land \neg(R = U \land B = V)]</tex> будет истинно. Если <tex>A = U \land R = V</tex> то чтобы <tex>\phi(A, B, t)</tex> было истино необходимо наличие такого мгновенного описания <tex>R</tex> чтобы были выполнены два утверждения: <tex>A\vdash^{t/2}R</tex> и <tex>R\vdash^{t/2}B</tex>.
 
Заметим, что размер функции <tex>\phi(a, B, t)</tex> равен размеру <tex>\phi(A, B, t/2)</tex> с константной добавкой <tex>(\exists R) (\forall U) (\forall V) \ \{\ * \lor [\neg(A = U \land B = R) \land \neg(A = R \land B = V)]\}</tex> .
 
Заметим, что размер функции <tex>\phi(a, B, t)</tex> равен размеру <tex>\phi(A, B, t/2)</tex> с константной добавкой <tex>(\exists R) (\forall U) (\forall V) \ \{\ * \lor [\neg(A = U \land B = R) \land \neg(A = R \land B = V)]\}</tex> .
 
Теперь мы можем записать функцию <tex>f(M, w)</tex>, которая будет переводить ДМТ <tex>M</tex> и слово на ленте <tex>w</tex> в <tex>TQBF</tex>.
 
Теперь мы можем записать функцию <tex>f(M, w)</tex>, которая будет переводить ДМТ <tex>M</tex> и слово на ленте <tex>w</tex> в <tex>TQBF</tex>.

Версия 23:53, 1 мая 2012

Определение:
[math]TQBF[/math] расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. [math]TQBF=\{Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n), Q_i \in \{\forall, \exists\}\}[/math]

Чтобы доказать, что [math]TQBF \in PSPACE-complete[/math], необходимо показать, что эта задача принадлежит [math]PSPACE[/math] и что она [math]PSPACE[/math]-трудная.

Лемма (1):
[math]TQBF \in PSPACSE[/math]
Доказательство:
[math]\triangleright[/math]

Чтобы доказать это, просто приведём программу, которая требует [math]O(n)[/math] дополнительной памяти и работает за конечное время.

[math]solve(Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi(x_1, x_2, \dots, x_n))[/math]
    if [math]Q_1 == \forall[/math]
        return [math]solve(Q_2 x_2 \cdots Q_n x_n \phi(0, x_2, \dots, x_n)) \land solve(Q_2 x_2 \cdots Q_n x_n \phi(1, x_2, \dots, x_n))[/math]
    if [math]Q_1 == \exists[/math]
        return [math]solve(Q_2 x_2 \cdots Q_n x_n \phi(0, x_2, \dots, x_n)) \lor solve(Q_2 x_2 \cdots Q_n x_n \phi(1, x_2, \dots, x_n))[/math]
Эта программа требует [math]O(n)[/math] дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — [math]n[/math]
[math]\triangleleft[/math]
Лемма (2):
[math] \forall L \in PS , L \leq_p TQBF[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим какой-то язык [math]L \in PSPACE[/math]. Построим функцию [math]f \colon \forall x \in L \Leftrightarrow f(x) \in TQBF[/math]. Так как [math]L \in PSPACE[/math], то существует какая-то детерминированная машина Тьюринга [math]M[/math], которая его распознаёт за полиномиальное от размера входа время. Пусть [math]I[/math] — мгновенное описание [math]M[/math], тогда выражение [math]\exists I[/math] обозначает [math] (\exists x_1) (\exists x_2)\cdots(\exists x_n)[/math], где [math]\{x_i\}[/math] — все переменные мгновенного описания [math]M[/math]. Аналогично выражение [math] \forall I[/math] обозначает [math] (\forall x_1) (\forall x_2)\dots(\forall x_n)[/math]. Теперь рассмотрим два мгновенных описание [math]M: A[/math] и [math]B[/math]. Напишем рекурсивную функцию [math]\phi(A, B, t)[/math], которая будет переводить утверждение [math]A\vdash^tB[/math] в TQBF за полиномиальное относительно длины входа время.

[math]\phi(A, B, t) = \\ (\exists R) (\forall U) (\forall V) \ \{\phi(U, V, t/2) \lor [\neg(A = U \land R = V) \land \neg(R = U \land B = V)]\}[/math]

Переменые [math] U [/math] и [math]V[/math] важны только как пары [math] (A, R)[/math] и [math](R, B)[/math], поэтому для всех остальных вариантов выражение [math][\neg(A = U \land R = V) \land \neg(R = U \land B = V)][/math] будет истинно. Если [math]A = U \land R = V[/math] то чтобы [math]\phi(A, B, t)[/math] было истино необходимо наличие такого мгновенного описания [math]R[/math] чтобы были выполнены два утверждения: [math]A\vdash^{t/2}R[/math] и [math]R\vdash^{t/2}B[/math].

Заметим, что размер функции [math]\phi(a, B, t)[/math] равен размеру [math]\phi(A, B, t/2)[/math] с константной добавкой [math](\exists R) (\forall U) (\forall V) \ \{\ * \lor [\neg(A = U \land B = R) \land \neg(A = R \land B = V)]\}[/math] . Теперь мы можем записать функцию [math]f(M, w)[/math], которая будет переводить ДМТ [math]M[/math] и слово на ленте [math]w[/math] в [math]TQBF[/math].

[math]f(M, w) = (\exists I_s) (\exists I_f) (x_{I_s, 0} = start \land x_{I_s, 1} = w[1] \land \dots \land x_{I_s, |w|} = w[|w|]) \land ((\exists i) x_{I_f, i} = finish) \land \phi(Start, Finish, 2^{log_2(c^{1+p(n)}})[/math]

Докажем, что получившаяся булева формула с кванторами удовлетворима тогда и только тогда, когда [math]w \in L[/math].

Если [math]w \in L[/math], то стартовое и финишное состояние заданы корректно. Также из стартового состояния можно попасть в финишное за полиномиальное время.

Если [math]w \not\in L[/math], то если мы зададим корректное стартовое состояние, то пути до корректного финишного состояния существовать не может.
[math]\triangleleft[/math]