Редактирование: PixelRNN и PixelCNN

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 15: Строка 15:
 
Так как утверждается, что значение текущего пикселя зависит от значения предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|''рекуррентные нейронные сети (RNN)'']], а точнее [[Долгая краткосрочная память|''долгую краткосрочную память (LSTM)'']]. В ранних работах<ref name=SpatialLSTM>[https://arxiv.org/abs/1506.03478 Generative Image Modeling Using Spatial LSTMs]</ref> уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.  
 
Так как утверждается, что значение текущего пикселя зависит от значения предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|''рекуррентные нейронные сети (RNN)'']], а точнее [[Долгая краткосрочная память|''долгую краткосрочную память (LSTM)'']]. В ранних работах<ref name=SpatialLSTM>[https://arxiv.org/abs/1506.03478 Generative Image Modeling Using Spatial LSTMs]</ref> уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.  
  
У алгоритма [[Долгая краткосрочная память|''LSTM'']] существует две модификации: '''''RowLSTM''''' и '''''Diagonal BiLSTM'''''. Основным преимуществом модификаций является возможность проводить вычисления параллельно, что ускоряет общее время обучения модели.
+
Авторы алгоритма модернизировали [[Долгая краткосрочная память|''LSTM'']] в '''''RowLSTM''''' и '''''Diagonal BiLSTM''''' для получения возможности проводить вычисления параллельно, что ускоряет общее время обучения модели.
  
 
=== RowLSTM ===
 
=== RowLSTM ===

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: