Редактирование: PixelRNN и PixelCNN
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 107: | Строка 107: | ||
[[File:exampleGAN.png|450px|thumb|Рисунок 8. Лица, сгенерированные с помощью GAN <ref name=ForwardScience>[https://towardsdatascience.com/how-to-train-stylegan-to-generate-realistic-faces-d4afca48e705 Towards data science]</ref>]] | [[File:exampleGAN.png|450px|thumb|Рисунок 8. Лица, сгенерированные с помощью GAN <ref name=ForwardScience>[https://towardsdatascience.com/how-to-train-stylegan-to-generate-realistic-faces-d4afca48e705 Towards data science]</ref>]] | ||
− | Если сравнивать [[Generative Adversarial Nets (GAN) | GAN]] с PixelCNN/PixelRNN, то можно отметить более хорошее качество получаемых изображений у генеративно-состязательного метода. Однако у метода GAN время обучения медленнее, чем у PixelCNN и PixelRNN. Для реализации GAN требуется найти равновесие Нэша, но в настоящее время нет алгоритма делающего это. Поэтому обучение GAN более нестабильное, если сравнивать с другими методами<ref name=Reg>[https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173 Auto-Regressive Generative Models]</ref>. В настоящее время многие мировые компании используют GAN для генерации изображений, например: [https://neurohive.io/ru/papers/pggan-progressivnaja-generativnaja-nejroset-ot-nvidia/ PGGAN] от ''Nvidia'', [https://bdol.github.io/exemplar_gans/ Exemplar | + | Если сравнивать [[Generative Adversarial Nets (GAN) | GAN]] с PixelCNN/PixelRNN, то можно отметить более хорошее качество получаемых изображений у генеративно-состязательного метода. Однако у метода GAN время обучения медленнее, чем у PixelCNN и PixelRNN. Для реализации GAN требуется найти равновесие Нэша, но в настоящее время нет алгоритма делающего это. Поэтому обучение GAN более нестабильное, если сравнивать с другими методами<ref name=Reg>[https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173 Auto-Regressive Generative Models]</ref>. В настоящее время многие мировые компании используют GAN для генерации изображений, например: PGGAN [https://neurohive.io/ru/papers/pggan-progressivnaja-generativnaja-nejroset-ot-nvidia/ Nvidia PGGAN] от ''Nvidia'', Exemplar GAN [https://bdol.github.io/exemplar_gans/ Facebook Exemplar] от ''Facebook'' и другие. |
{| class="wikitable" | {| class="wikitable" |