Редактирование: XGBoost
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 36: | Строка 36: | ||
<tex>g_i = \frac {\partial {l(y_i,\hat{y_i}^{t-1})}}{\partial{\hat{y_i}^{t-1}}}</tex>, <tex>h_i = \frac {\partial^2 {l(y_i,\hat{y_i}^{t-1})}}{\partial^2{\hat{y_i}^{t-1}}}</tex> | <tex>g_i = \frac {\partial {l(y_i,\hat{y_i}^{t-1})}}{\partial{\hat{y_i}^{t-1}}}</tex>, <tex>h_i = \frac {\partial^2 {l(y_i,\hat{y_i}^{t-1})}}{\partial^2{\hat{y_i}^{t-1}}}</tex> | ||
− | Поскольку мы хотим минимизировать ошибку модели на обучающей | + | Поскольку мы хотим минимизировать ошибку модели на обучающей выборки, нам нужно найти минимум <tex>\mathcal{L}^{(t)}</tex> для каждого ''t''. |
Минимум этого выражения относительно <tex>f_t(x_i)</tex> находится в точке <tex>f_t(x_i) = \frac{-g_i}{h_i}</tex>. | Минимум этого выражения относительно <tex>f_t(x_i)</tex> находится в точке <tex>f_t(x_i) = \frac{-g_i}{h_i}</tex>. |