XGBoost — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Идея алгоритма)
(Основные параметры)
Строка 41: Строка 41:
 
* ''n_estimators'' {{---}} число деревьев.
 
* ''n_estimators'' {{---}} число деревьев.
 
* ''eta'' {{---}} размер шага. Пердотвращает переобучение.
 
* ''eta'' {{---}} размер шага. Пердотвращает переобучение.
* ''gamma'' {{---}} минимальный ''loss'' для совершения ''split'a''.
+
* ''gamma'' {{---}} минимальное изменение значении ''loss'' функции для разделения листа на поддеревья.
 
* ''max_depth'' {{---}} максимальная глубина дерева.
 
* ''max_depth'' {{---}} максимальная глубина дерева.
 
* ''lambda''/''alpha'' {{---}} ''L2''/''L1'' регуляризация.
 
* ''lambda''/''alpha'' {{---}} ''L2''/''L1'' регуляризация.

Версия 14:29, 17 марта 2019

XGBoost[1] — одна из самых популярных и эффективных реализаций алгоритма градиентного бустинга на деревьях на 2019-й год.

История

XGBoost изначально стартовал как исследовательский проект Тяньцзи Чена (Tianqi Chen) как часть сообщества распределенного глубинного машинного обучения. Первоначально он начинался как терминальное приложение, которое можно было настроить с помощью файла конфигурации libsvm. После победы в Higgs Machine Learning Challenge, он стал хорошо известен в соревновательный кругах по машинному обеспечению. Вскоре после этого были созданы пакеты для Python и R, и теперь у него есть пакеты для многих других языков, таких как Julia, Scala, Java и т. д. Это принесло библиотеке больше разработчиков и сделало ее популярной среди сообщества Kaggle[2], где она использовалось для большого количества соревнований.

Она вскоре стала использоваться с несколькими другими пакетами, что облегчает ее использование в соответствующих сообществах. Теперь у нее есть интеграция с scikit-learn для пользователей Python, а также с пакетом caret для пользователей R. Она также может быть интегрирована в рамах потока данных, таких как Apache Spark[3], Apache Hadoop[4], и Apache Flink[5] с использованием абстрактных Rabit[6] и XGBoost4J[7]. Принцип работы XGBoost также был опубликован Тяньцзи Ченом (Tianqi Chen) и Карлосом Гастрин (Carlos Guestrin).

Основные преимущества

  • Возможность добавлять регуляризацию[на 16.03.19 не создан].
  • Возможность работать с разреженными данными.
  • Возможность распределенного обучения.
  • Эффективная реализация.

Идея алгоритма

[math]\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}+f_t(x_i))+\Omega(f_t)[/math] — функция для оптимизации градиентного бустинга, где:

[math]l[/math] — функция потерь, см. Общие понятия.

[math]y_i, \hat{y_i}^{t}[/math] — значение i-го элемента обучающей выборки и сумма предсказаний первых t деревьев соответственно.

[math]x_i[/math] — набор признаков i-го элемента обучающей выборки.

[math]f_t[/math] — функция (в нашем случае дерево), которую мы хотим обучить на шаге t. [math]f_t(x_i)[/math] — предсказание на i-ом элементе обучающей выборки.

[math]\Omega(f)[/math] — регуляризация функции [math]f[/math]. [math]\Omega(f) = \gamma T + \frac{1}{2} \lambda \lVert w \rVert ^2[/math], где T — количество вершин в дереве, [math]w[/math] — значения в листьях, а [math]\gamma[/math] и [math]\lambda[/math] — параметры регуляризации.

Дальше с помощью разложения Тейлора до второго члена можем приблизить это следующим выражением:

[math]\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}) + g_i f_t(x_i) + 0.5 h_i f_t^2(x_i)) + \Omega(f_t)[/math], где

[math]g_i = \frac {\partial {l(y_i,\hat{y_i}^{t-1})}}{\partial{\hat{y_i}^{t-1}}}[/math], [math]h_i = \frac {\partial^2 {l(y_i,\hat{y_i}^{t-1})}}{\partial^2{\hat{y_i}^{t-1}}}[/math]

Поскольку мы хотим минимизировать ошибку модели на обучающей выборки, нам нужно найти минимум [math]\mathcal{L}^{(t)}[/math] для каждого t.

Минимум этого выражения относительно [math]f_t(x_i)[/math] находится в точке [math]f_t(x_i) = \frac{-g_i}{h_i}[/math].

Каждое отдельное дерево ансамбля [math]f_t(x_i)[/math] обучается стандартным алгоритмом. Для более полного описания см. Дерево решений и случайный лес.

Основные параметры

  • n_estimators — число деревьев.
  • eta — размер шага. Пердотвращает переобучение.
  • gamma — минимальное изменение значении loss функции для разделения листа на поддеревья.
  • max_depth — максимальная глубина дерева.
  • lambda/alphaL2/L1 регуляризация.

Более полное описание параметров модели тут[8].

Пример использования с помощью библиотеки xgboost

from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
import xgboost as xgb
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
param = {
   'max_depth': 3,
   'eta': 0.3, 
   'silent': 1, 
   'objective': 'multi:softprob',
   'num_class': 3}
num_round = 20
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
import numpy as np
from sklearn.metrics import precision_score
best_preds = np.asarray([np.argmax(line) for line in preds])
print precision_score(y_test, best_preds, average='macro')

См. также

Примечания

Источники информации