Изменения

Перейти к: навигация, поиск

XGBoost

3777 байт добавлено, 13:49, 17 октября 2019
Основные параметры: опечатка
Она вскоре стала использоваться с несколькими другими пакетами, что облегчает ее использование в соответствующих сообществах. Теперь у нее есть интеграция с scikit-learn для пользователей Python, а также с пакетом caret для пользователей R. Она также может быть интегрирована в рамах потока данных, таких как Apache Spark<ref>[https://spark.apache.org/ Apache Spark]</ref>, Apache Hadoop<ref>[https://hadoop.apache.org/ Apache Hadoop]</ref>, и Apache Flink<ref>[https://flink.apache.org/ Apache Flink]</ref> с использованием абстрактных Rabit<ref>[https://github.com/dmlc/rabit Rabit]</ref> и XGBoost4J<ref>[https://xgboost.readthedocs.io/en/latest/jvm/ XGBoost JVM]</ref>. Принцип работы XGBoost также был опубликован Тяньцзи Ченом (Tianqi Chen) и Карлосом Гастрин (Carlos Guestrin).
 
==Возможности XGBoost==
'''Особенности модели'''
 
Реализация модели поддерживает особенности реализации scikit-learn и R с новыми дополнениями, такими как регуляризация. Поддерживаются три основные формы повышения градиента:
 
* Алгоритм Gradient Boosting также называется градиентной машиной повышения, включая скорость обучения.
* Stochastic Gradient Boosting с суб-выборкой в ​​строке, столбце и столбце на каждый уровень разделения.
* Регулярное усиление градиента с регуляцией L1 и L2.
 
'''Системные функции'''
 
Библиотека предоставляет систему для использования в различных вычислительных средах, не в последнюю очередь:
 
* Параллелизация построения дерева с использованием всех ваших ядер процессора во время обучения.
* Распределенные вычисления для обучения очень крупных моделей с использованием кластера машин.
* Внекорпоративные вычисления для очень больших наборов данных, которые не вписываются в память.
* Кэш Оптимизация структуры данных и алгоритма для наилучшего использования аппаратного обеспечения.
 
'''Особенности алгоритма'''
 
Реализация алгоритма была разработана для эффективности вычислительных ресурсов времени и памяти. Цель проекта заключалась в том, чтобы наилучшим образом использовать имеющиеся ресурсы для обучения модели. Некоторые ключевые функции реализации алгоритма включают:
 
* Редкая реализация Aware с автоматической обработкой отсутствующих значений данных.
* Блочная структура для поддержки распараллеливания конструкции дерева.
* Продолжение обучения, чтобы вы могли еще больше повысить уже установленную модель для новых данных.
==Описание алгоритма==
[[File:golf-MSE.png|700px|thumb|[https://explained.ai/gradient-boosting/images/golf-MSE.png Иллюстрация бустинга]]]В основе '''XGBoost''' лежит алгоритм [[Бустинг, AdaBoost|градиентного бустинга]] [[Дерево решений и случайный лес|деревьев решений]]. Идея алгоритма Градиентный бустинг — это техника машинного обучения для задач классификации и регрессии, которая строит модель предсказания в форме ансамбля слабых предсказывающих моделей, обычно деревьев решений.Обучение ансамбля проводится последовательно в томотличие, что каждое следующе дерево предсказывает ошибку например от [[Виды_ансамблей | бэггинга]]. На каждой итерации вычисляются отклонения предсказаний уже обученного ансамбля на каждом элементе обучающей выборкивыборке. Каждое отдельное дерево обучается одним из стандартных алгоритмов используемых для обучения деревьев решенийСледующая модель, которая будет добавлена в ансамбль будет предсказывать эти отклонения. Таким образом предсказание складывается из предсказаний каждого отдельного , добавив предсказания нового дерева к предсказаниям обученного ансамблямы можем уменьшить среднее отклонение модели, котрое является таргетом оптимизационной задачи. Новые деревья добавляются в ансамбль до тех пор,пока ошибка уменьшается, либо пока не выполняется одно из правил "ранней остановки".
Рассмотрим иллюстрацию бустинга. На ней рассматривается поведение модели на одной точке абстрактной задачи линейной регрессии. Предположим, что первая модель ансамбля <tex>F</tex> всегда выдает
выборочное среднее предсказываемой величины <tex>f_0</tex>. Такое предсказание довольно грубое, поэтому среднеквадратичное отклонение на выбранной нами точке будет довольно большим. Мы попробуем это исправить обучив модель
<tex>\Delta_1</tex>, которая будет "корректировать" предсказание предыдущего ансамбля <tex>F_0</tex>. Таким образом мы получим ансамбль <tex>F_1</tex>, предсказание которого будет суммироваться из предсказаний моделей <tex>f_0</tex> и <tex>\Delta_1</tex>. Продолжая такую последовательность мы приходим к ансамблю <tex>F_4</tex> предсказание которого суммируется из предсказаний <tex>f_0</tex>, <tex>\Delta_1</tex>, <tex>\Delta_2</tex>, <tex>\Delta_3</tex>, <tex>\Delta_4</tex> и предсказывает в точности значение заданного таргета.
===Математика за алгоритмом===
<tex>\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}+f_t(x_i))+\Omega(f_t)</tex> {{---}} функция для оптимизации градиентного бустинга, где:
<tex>w</tex> {{---}} значения в листьях, а <tex>\gamma</tex> и <tex>\lambda</tex> {{---}} параметры регуляризации.
Дальше с помощью разложения Тейлора до второго члена можем приблизить это оптимизируемую функцию <tex>\mathcal{L}^{(t)}</tex> следующим выражением:
<tex>\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}) + g_i f_t(x_i) + 0.5 h_i f_t^2(x_i)) + \Omega(f_t)</tex>, где
Каждое отдельное дерево ансамбля <tex>f_t(x_i)</tex> обучается стандартным алгоритмом. Для более полного описания см. [[Дерево решений и случайный лес|Дерево решений и случайный лес]].
 
==Возможности XGBoost==
'''Особенности модели'''
 
XGBoost поддерживает все возможности таких библиотек как scikit-learn с возможностью добавлять регуляризацию. Поддержаны три главные формы градиетного бустинга:
 
* Стандартный [[Бустинг,_AdaBoost|градиентный бустинг]] с возможностью изменения скорости обучения(''learning rate'').
* Стохастический градиентный бустинг<ref>[https://statweb.stanford.edu/~jhf/ftp/stobst.pdf Stochastic Gradient Boosting]</ref> с возможностью семплирования по строкам и колонкам датасета.
* Регуляризованный градиентный бустинг<ref>[https://arxiv.org/pdf/1806.09762.pdf Regularized Gradient Boosting]</ref> с L1 и L2 регуляризацией.
 
'''Системные функции'''
 
Библиотека предоставляет систему для использования в различных вычислительных средах:
 
* Параллелизация построения дерева с использованием всех ваших ядер процессора во время обучения.
* Распределенные вычисления для обучения очень крупных моделей с использованием кластера машин.
* Вычисления для очень больших наборов данных, которые не вписываются в память.
* Кэш Оптимизация структуры данных и алгоритма для наилучшего использования аппаратного обеспечения.
 
'''Особенности алгоритма'''
 
Реализация алгоритма была разработана для эффективности вычислительных ресурсов времени и памяти. Цель проекта заключалась в том, чтобы наилучшим образом использовать имеющиеся ресурсы для обучения модели. Некоторые ключевые функции реализации алгоритма включают:
 
* Различные стратегии обработки пропущенных данных.
* Блочная структура для поддержки распараллеливания обучения деревьев.
* Продолжение обучения для дообучения на новых данных.
==Основные параметры==
* ''n_estimators'' {{---}} число деревьев.
* ''eta'' {{---}} размер шага. Пердотвращает Предотвращает переобучение.
* ''gamma'' {{---}} минимальное изменение значения ''loss'' функции для разделения листа на поддеревья.
* ''max_depth'' {{---}} максимальная глубина дерева.
* ''lambda''/''alpha'' {{---}} ''L2''/''L1'' регуляризация.
Более полное описание Для более полного описания параметров модели тутсм. документацию<ref>[https://xgboost.readthedocs.io/en/latest/parameter.html XGBoost Parameters]</ref>. ==Поддерживаемые интерфейсы==* Интерфейс командной строки (CLI).* C++ (язык, на котором написана библиотека).* Интерфейс Python, а также модель в Scikit-Learn.* R интерфейс, а также модель в пакете карета.* Julia.* JVM языки, такие как Java, Scala, и платформы, такие как Hadoop.
==Пример использования с помощью библиотеки xgboost==
Загрузка датасета.
'''from''' sklearn '''import''' datasets
iris = datasets.'''load_iris'''()
X = iris.'''data'''
y = iris.'''target'''
from sklearn import datasets iris = datasets.load_iris() X = iris.data y = irisРазделение датасета на обучающую/тестовую выборку.target  '''from ''' sklearn.cross_validation '''import ''' train_test_split X_train, X_test, y_train, y_test = '''train_test_split'''(X, y, test_size=0.2, random_state=42)  import xgboost as xgb
Импорт ''XGBoost'' и создание необходимых объектов. '''import''' xgboost as xgb dtrain = xgb.'''DMatrix'''(X_train, label=y_train) dtest = xgb.'''DMatrix'''(X_test, label=y_test)
Задание параметров модели.
param = {
'max_depth': 3,
num_round = 20
Обучение. bst = xgb.'''train'''(param, dtrain, num_round) preds = bst.'''predict'''(dtest)
Определение качества модели на тестовой выборке. '''import ''' numpy '''as ''' np '''from ''' sklearn.metrics '''import ''' precision_score
best_preds = np.asarray([np.argmax(line) for line in preds])
'''print ''' precision_score(y_test, best_preds, average='macro')
==См. также==
* [https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a XGBoost Mathematics Explained]
* [https://medium.com/@gabrieltseng/gradient-boosting-and-xgboost-c306c1bcfaf5 Gradient Boosting and XGBoost]
* [https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/ A Gentle Introduction to XGBoost for Applied Machine Learning]
[[Категория: Машинное обучение]]
[[Категория: Ансамбли]]
Анонимный участник

Навигация