Изменения

Перейти к: навигация, поиск

XGBoost

2619 байт добавлено, 13:49, 17 октября 2019
Основные параметры: опечатка
==Описание алгоритма==
[[File:golf-MSE.png|700px|thumb|[https://explained.ai/gradient-boosting/images/golf-MSE.png Иллюстрация бустинга]]]
В основе '''XGBoost''' лежит алгоритм [[Бустинг, AdaBoost|градиентного бустинга]] [[Дерево решений и случайный лес|деревьев решений]]. Идея алгоритма Градиентный бустинг — это техника машинного обучения для задач классификации и регрессии, которая строит модель предсказания в томформе ансамбля слабых предсказывающих моделей, что каждое следующе дерево предсказывает ошибку обычно деревьев решений.Обучение ансамбля проводится последовательно в отличие, например от [[Виды_ансамблей | бэггинга]]. На каждой итерации вычисляются отклонения предсказаний уже обученного ансамбля на каждом элементе обучающей выборкивыборке. Каждое отдельное дерево обучается одним из стандартных алгоритмов используемых для обучения деревьев решенийСледующая модель, которая будет добавлена в ансамбль будет предсказывать эти отклонения. Таким образом предсказание складывается из предсказаний каждого отдельного , добавив предсказания нового дерева к предсказаниям обученного ансамблямы можем уменьшить среднее отклонение модели, котрое является таргетом оптимизационной задачи. Новые деревья добавляются в ансамбль до тех пор,пока ошибка уменьшается, либо пока не выполняется одно из правил "ранней остановки".
Рассмотрим иллюстрацию бустинга. На ней рассматривается поведение модели на одной точке абстрактной задачи линейной регрессии. Предположим, что первая модель ансамбля <tex>F</tex> всегда выдает
выборочное среднее предсказываемой величины <tex>f_0</tex>. Такое предсказание довольно грубое, поэтому среднеквадратичное отклонение на выбранной нами точке будет довольно большим. Мы попробуем это исправить обучив модель
<tex>\Delta_1</tex>, которая будет "корректировать" предсказание предыдущего ансамбля <tex>F_0</tex>. Таким образом мы получим ансамбль <tex>F_1</tex>, предсказание которого будет суммироваться из предсказаний моделей <tex>f_0</tex> и <tex>\Delta_1</tex>. Продолжая такую последовательность мы приходим к ансамблю <tex>F_4</tex> предсказание которого суммируется из предсказаний <tex>f_0</tex>, <tex>\Delta_1</tex>, <tex>\Delta_2</tex>, <tex>\Delta_3</tex>, <tex>\Delta_4</tex> и предсказывает в точности значение заданного таргета.
===Математика за алгоритмом===
<tex>\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}+f_t(x_i))+\Omega(f_t)</tex> {{---}} функция для оптимизации градиентного бустинга, где:
<tex>w</tex> {{---}} значения в листьях, а <tex>\gamma</tex> и <tex>\lambda</tex> {{---}} параметры регуляризации.
Дальше с помощью разложения Тейлора до второго члена можем приблизить это оптимизируемую функцию <tex>\mathcal{L}^{(t)}</tex> следующим выражением:
<tex>\mathcal{L}^{(t)} = \sum_{i=1}^n l(y_i,\hat{y_i}^{(t-1)}) + g_i f_t(x_i) + 0.5 h_i f_t^2(x_i)) + \Omega(f_t)</tex>, где
==Основные параметры==
* ''n_estimators'' {{---}} число деревьев.
* ''eta'' {{---}} размер шага. Пердотвращает Предотвращает переобучение.
* ''gamma'' {{---}} минимальное изменение значения ''loss'' функции для разделения листа на поддеревья.
* ''max_depth'' {{---}} максимальная глубина дерева.
==Пример использования с помощью библиотеки xgboost==
Загрузка датасета.
'''from ''' sklearn '''import ''' datasets iris = datasets.'''load_iris'''() X = iris.'''data''' y = iris.'''target'''
Разделение датасета на обучающую/тестовую выборку.
'''from ''' sklearn.cross_validation '''import ''' train_test_split X_train, X_test, y_train, y_test = '''train_test_split'''(X, y, test_size=0.2, random_state=42)
Импорт ''XGBoost'' и создание необходимых объектов.
'''import ''' xgboost as xgb dtrain = xgb.'''DMatrix'''(X_train, label=y_train) dtest = xgb.'''DMatrix'''(X_test, label=y_test)
Задание параметров модели.
Обучение.
bst = xgb.'''train'''(param, dtrain, num_round) preds = bst.'''predict'''(dtest)
Определение качества модели на тестовой выборке.
'''import ''' numpy '''as ''' np '''from ''' sklearn.metrics '''import ''' precision_score
best_preds = np.asarray([np.argmax(line) for line in preds])
'''print ''' precision_score(y_test, best_preds, average='macro')
==См. также==
Анонимный участник

Навигация