Лемма о разрастании для КС-грамматик

Материал из Викиконспекты
Перейти к: навигация, поиск
Лемма (о разрастании КС-грамматик):
Пусть [math]L[/math]контекстно-свободный язык над алфавитом [math]\Sigma[/math], тогда существует такое [math]n[/math], что для любого слова [math] \omega \in L[/math] длины не меньше [math]n[/math] найдутся слова [math] u,v,x,y,z \in \Sigma^*[/math], для которых верно: [math]uvxyz=\omega, vy\neq \varepsilon, |vxy|\leqslant n[/math] и [math]\forall k \geqslant 0~uv^{k}xy^{k}z\in L[/math].
Доказательство:
[math]\triangleright[/math]
CS lemma conspect.PNG
Грамматика любого контекстно-свободного языка может быть записана в нормальной форме Хомского (НФХ). Пусть [math]m[/math] — количество нетерминалов в грамматике языка [math]L[/math], записанной в НФХ.

Выберем [math]n=2^{m+1}[/math]. Построим дерево разбора произвольного слова [math]\omega[/math] длиной больше, чем [math]n[/math]. Высотой дерева разбора назовем максимальное число нетерминальных символов на пути от корня дерева к листу. Так как грамматика языка [math]L[/math] записана в НФХ, то у любого нетерминала в дереве могут быть, либо два потомка нетерминала, либо один потомок терминал. Поэтому высота дерева разбора слова [math]\omega[/math] не меньше [math]m+1[/math].

Рассмотрим самый длинный путь от вершины дерева разбора до листа. Количество нетерминалов в нем не меньше, чем [math]m+1[/math], следовательно, найдется такой нетерминал [math]B[/math], который встречается на этом пути дважды. Значит, в дереве разбора найдется нетерминал [math]B[/math], в поддереве которого содержится нетерминал [math]B[/math]. Выберем нетерминал [math]A[/math], у которого в поддереве содержится такой же нетерминал и длина пути до корня максимальна среди нетерминалов, содержащих в поддереве такой же нетерминал. Далее рассмотрим путь от предпоследнего повторения нетерминала [math] A[/math] до последнего его вхождения в дерево. Если из вершины был сделан переход в левое поддерево, то строка, выведенная из правого поддерева, будет частью [math]y[/math]. Аналогично из левых поддеревьев получаем [math]v[/math]. Так как грамматика записана в НФХ, то либо [math]v[/math], либо [math]y[/math] не будет пустой строкой, то есть условие [math]|vy|\gt 0[/math] выполнено.

Таким образом, [math]S \Rightarrow^{*} uAz \Rightarrow^{*} uvAyz \Rightarrow^{*} uvvAyyz \Rightarrow^{*} uv^{k}Ay^{k}z \Rightarrow^{*} uv^{k}xy^{k}z[/math].
[math]\triangleleft[/math]