Изменения

Перейти к: навигация, поиск

Flow shop

15 байт добавлено, 18:55, 17 мая 2016
Задача Джонсона о двух станках с прерываниями F_2 \mid pmtn \mid C_{max}
== Задача Джонсона о двух станках с прерываниями <tex>F_2 \mid pmtn \mid C_{max}</tex> ==
{{Теорема|statement= Оптимальное решение этой задачи совпадает с решением задачи <tex>F_2 \mid \mid C_{max}</tex>, приведённой выше. Докажем это. |proof = Пусть у нас есть оптимальное расписание для задачи <tex>F_2 \mid pmtn \mid C_{max}</tex>. Покажем, что его за конечное число шагов можно преобразовать к расписанию без прерываний, не изменив при это значение <tex>C_{max}</tex> .
Рассмотрим первую машину. Допустим, что некоторая работа <tex> J </tex> выполняется в <tex> 2 </tex> или более разных промежутка времени. Тогда передвинем более ранний промежуток вправо по оси времени так, чтоб он заканчивался в тот момент, когда начинается второй промежуток, при этом работы, которые были между этими двумя промежутками, сдвинем влево на длину первого промежутка. Расписание при этом осталось корректным, так как работы на машинах по-прежнему не пересекаются, и каждая работа на второй машине делается после того, как она сделана на первой: работа <tex> J </tex> может начать выполняться на второй машине только после того, как она целиком выполнится на первой, то есть уже после конца второго промежутка; а время окончания выполнения остальных работ на первой машине неувеличилось.
Теперь избавимся от прерываний на второй машине. Точно так же рассмотрим работу, разбитую на два или более промежутка. Передвинем более поздний промежуток к концу более раннего, а работы между ними сдвинем вправо. Доказательство корректности измененного расписания аналогично доказательству для первой машины. Будем повторять данную операцию, пока на второй машине присутствуют прерывания.
Таким образом, мы получили корректное расписание без прерываний, не изменив при этом значение <tex>C_{max}</tex>, что и требовалось доказать.}}
== См. также ==
251
правка

Навигация