Изменения

Перейти к: навигация, поиск
м
Нет описания правки
Пусть последовательность <tex>a_0, a_1, \ldots</tex> положительных чисел такова, что <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{n^k+\alpha_1 n^{k-1}+ \ldots +\alpha_k}{n^k+\beta_1 n^{k-1}+ \ldots +\beta_k}</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim cA^n n^{\alpha_1-\beta_1}</tex> для некоторой постоянной <tex>c>0</tex>.
|proof=
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim\limits_{n \to \infty} { ( \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n )}</tex>.
Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. Фундаментальность последовательности означает, что для любого <tex>&epsilon; > 0</tex> существует такой номер <tex>N</tex>, что для всех <tex>n > N</tex> и всех положительных <tex>m</tex>
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex> в ряд в точке <tex>0</tex>:
<tex>f(x)=1 + (\alpha_1 - \beta_1)x + \gamma x^2 + \ldots</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f</tex> имеем
<tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2 + \ldots</tex>
<tex>\ldots</tex>
<tex>+ | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cfrac{1}{n+m}| + | \alpha_1 - \beta_1 | \cdot | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n | \leqslant</tex>
<tex>\leqslant C(\cfrac{1}{n^2} + \cfrac{1}{(n+1)^2} + \ldots + \cfrac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | \cdot | \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n |</tex>.
Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>,
'''Пример.''' Для [[Числа Каталана|чисел Каталана]] имеем
<tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4n+2}{n+2}=4\cfrac{n+\cfracfrac{1}{2}}{n+2}</tex>
Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>.
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам
<tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cfrac{n-\alpha}{n+1}</tex>
Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для [[Числа Каталана|чисел Каталана]].
== См. также ==
74
правки

Навигация