Изменения

Перейти к: навигация, поиск
CONN
|proof=Для всех <tex dpi="130">r \in [3;n]</tex> найдем число способов выбрать вершины для цикла длины <tex dpi="130">r</tex>, их количество равняется <tex dpi="130">\binom{n}{r}</tex>. Найдём число способов упорядочить выбранные вершины: заметим что каждый цикл длины <tex dpi="130">r</tex> порождается <tex dpi="130">2r</tex> способами (у каждой перестановки существует <tex dpi="130">r - 1</tex> циклический сдвиг и одно зеркальное представление), поэтому существует <tex dpi="130">\frac{r!}{2r} = \frac{(r-1)!}{2}</tex> различных циклов. Найдём количество способов достроить полученный цикл до связного унициклического графа. Заметим, что при удалениии всех ребер цикла граф станет лесом из <tex dpi="130">r</tex> деревьев и <tex dpi="130">n</tex> вершин. Используя [[Коды Прюфера|кодирование Прюфера]], получим, что количество таких лесов равно <tex dpi="130">r {n}^{n-r-1}</tex>. Нахождение количества таких лесов аналогично нахождению [[Количество помеченных деревьев|количества помеченных деревьев]]. Значит, количество унициклических графов порядка <tex dpi="130">n</tex> равно <tex dpi="130">U_{n}=\sum\limits_{r=3}^{n}\binom{n}{r}\frac{r!}{2}n^{n-r-1}</tex>.
}}
 
==Связные графы==
{{Определение
|definition=
<tex dpi="130">CONN_{n}</tex> - количество связных графов с <tex dpi="130">n</tex> вершинами.
}}
 
{{Лемма
|statement=
<tex dpi="150">G_{n} = 2^{\binom{n}{2}}</tex>, где <tex dpi="150">G_{n}</tex> {{---}} количество помеченных графов с <tex dpi="130">n</tex> вершинами.
}}
 
{{Утверждение
|statement=
<tex dpi="150">CONN_{n}=G_{n} - \frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex>, {{---}} количество связных графов с <tex dpi="130">n</tex> вершинами.
|proof=
 
Рассмотрим соотношение количества связных и несвязных графов. Очевидно, что <tex dpi="150">CONN_{n}=G_{n}-X_{n}</tex>, где <tex dpi="150">X_{n}</tex> {{---}} количество несвязных графов. Также <tex dpi="150">X_{n}=\dfrac{Y_{n}}{n}</tex>, где <tex dpi="150">Y_{n}</tex> {{---}} количество корневых<ref>[[wikipedia:Rooted_graph | Wikipedia {{---}} Корневой граф]]</ref> несвязных графов.
 
Вычислим <tex dpi="150">Y_{n}</tex>. Заметим, что, так как граф является несвязным, то в нём найдётся компонента связности, внутри которой лежит корневая вершина, а остальной граф будет представлять собой одну или более компонент связности. Переберем количество вершин в компоненте связности, содержащей корневую вершину. <tex dpi="150">(k=1\ldots n-1)</tex>. Для каждого <tex dpi="150">k</tex> посчитаем количество таких графов. Количество способов выбрать <tex dpi="150">k</tex> вершин из <tex dpi="150">n</tex> равно <tex dpi="150">\binom{n}{k}</tex>. Оставшийся граф является произвольным, таким образом, количество помеченных графов в нем равно <tex dpi="150">G_{n-k}</tex>. Количество способов выделить корневую вершину в компоненте связности из <tex dpi="150">k</tex> вершин равно <tex dpi="150">k</tex>. Также количество связных графов в компоненте связности с корневой вершиной равно <tex dpi="150">CONN_{k}</tex>.
 
Итого, для фиксированного <tex dpi="150">k</tex> количество корневых несвязных графов равно
 
<tex dpi="150">Y_{n}=k\binom{n}{k}CONN_{k}G_{n-k}</tex>.
 
Значит, количество несвязных графов с <tex dpi="150">n</tex> вершинами равно
 
<tex dpi="150">X_{n}=\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}CONN_{k}G_{n-k}</tex>
 
Таким образом, количество связных графов с <tex dpi="130">n</tex> вершинами равно
 
<tex dpi="150">CONN_{n}=G_{n}-\frac{1}{n}\sum\limits_{k=1}^{n-1}k\binom{n}{k}G_{n-k}CONN_{k}</tex>
}}
 
==Пары (Pair)==
Анонимный участник

Навигация