
ACM ICPC 2014–2015
Northeastern European Regional Contest

Problems Review

Roman Elizarov

December 7, 2014

Problem A. Alter Board

I The minimal answer to this problem is bn/2c+ bm/2c
I The solution is to make inversions on each even row and each

even column
I To prove that the answer is minimal consider the first column

with its n cells that form n − 1 neighbouring pairs
I to turn all cells of the first column in the same color inversions

must span the first column
I each spanning inversion makes at most two neighbouring pairs

of the same color
I so the minimum of d(n − 1)/2e = bn/2c inversions are needed

I Then consider the top row in the same way

Problem B. Burrito King

I Consider the problem as a sum of vectors in (a, b) coordinates

I The resulting vector may not go above b = B line and must
extend on a axis as far as possible

I It is optimal to greedily add (ai , bi) ingredient vectors starting
from the ones that have the least angle to 0a line (or maximal
ai/bi), until b = B line is crossed

I Be careful about corner cases with ai = 0 and/or bi = 0

a

b

0 A

B

Problem C. Cactus Generator

I This is a straightforward problem for parsing and OO design

I Define class for graph with a method to generate graph given
index of the first and the vertices

I Define class for various range types
I Parse and construct classes tree
I Build the resulting graph

I Connect arbitrary pairs of vertices of odd degree in the
resulting graph using temporary edges

I Use classical algorithm for Eulerian path

I Remove temporary edges to get the minimal number of
covering paths

Problem D. Damage Assessment

I Numerically integrate the square section by dx

I The square of the cut at a given x coordinate is a simple
planar geometry problem

I Take care about leftmost point with infinite derivative
I however, the required precision does not make this a big

problem
I the square section at this point is small

x

Problem E. Epic Win!
I There is a simple solution with up to n2 states
I Build your FSM as n copies of a winning FSM with n states

I Each state of a winning FSM corresponds to a state in the
opponent FSM

I Each move of a winning FSM is a winning move for the
corresponding opponent’s move

I Next state in a winning FSM corresponds to the opponent
move and opponent’s next state

I Leave other transitions undefined

I The first copy of a winning FMS starts in its first state and
wins an opponent that stats in it first state by construction

I Model the behaviour of the opponent and your FSM for all
opponent start states from the states 2 to n

I When a yet undefined transition is reached, then insert a
transition to a fresh copy of a winning FSM into the state
corresponding to the opponent’s, thus ensuring win in this copy

I Stop modelling when loop is detected
I Loop is inside one copy of a winning FSM and is always

winning by construction

Problem F. Filter

I Nothing fancy here

I Just implement what the problem statement asks for in a
straightforward way

I The hardest part seems to be reading and understanding the
problem statement

Problem G. Gomoku

I The first player’s strategy has pretty strict priorities in the
moves it makes and it can be exploited

I Make the first move into the free space of the board

2

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I The opponent must play around the center and you form a
diagonal

2

4

3

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I The opponent forms three in a row and you make defensive
moves

2

4

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I The opponent closes two in a row at one side, and you extend
in on the other

10

2

4

9

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I The opponent closes the three on the other side, but you
continue offence at building a winning position

11

10

2

4 12

9

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I Force the opponent into a sequence of defensive moves

I Then close four in a row with a hole that is formed by the
opponent defence

15 11

14 18 10 19

2 20

4 16 12 17

9 13

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku cont’d

I The opponent closes your open three, you extend it, forming a
winning fork

15 22 11

14 18 10 19

2 20

4 16 12 17

9 21 13

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem G. Gomoku win

I You win

I It is very hard to win otherwise, because playing first in
gomoku gives an enormous advantage even to such a simple
strategy

26 23

15 22 11

14 18 10 19

2 20

4 16 12 17 24

9 21 13 25

6

3

1

5

7

8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

Problem H. Hidden Maze

I Make a rooted tree
I Lets compute how many times each edge is a median

I Start with an edge with lowest ci and work in increasing order
of ci

I For each edge ci look at its lowest vertex j in the tree
I For each path from j down into the subtree, let the balance be

the number of edges with c higher than current ci minus the
number of edges with c lower than current ci

I For each vertex j maintain an array bj
I with 2dj + 1 elements bj [δ] for |δ| ≤ di , where dj is a depth of

subtree rooted at j
I each item bj [δ] contains a number of paths down from j with a

balance δ
I including an empty path with balance zero

Problem H. Hidden Maze cont’d
I Initial bj [δ] is the number of paths of a length δ down from

vertex j
I It is easy to compute recursively in O(

∑
dj) while building

rooted tree

I From the current vertex j walk up the tree
I For all vertices k up tree from j compute the number of paths

with balance zero going from down up to j , then up to k then
down to other subtree of k

I paths with zero balance are the ones where ci is the median

∑
δ=−dj ...dj

bj [δ] · (bk [−δ − Γk,j↑]− bk↓[δ − Γk,j − Γk,k↓])

I where k ↓ is the next vertex from k down on the path to j and
j ↑ is the next vertex up from j

I and Γk,j is the sum of balances on a path from k to j

I The total complexity is O(
∑

dj · hj), where hj is the height of
vertex j — length of path from root

Problem H. Hidden Maze cont’d

I Update bj [δ] when done with an edge ci
I For all vertices k up tree from j update the bk arrow taking

into account that ci balance changes from −1 to 1

bk [δ]← bk [δ] + bj [δ − Γk,j↑ + 1]− bj [δ − Γk,j↑ − 1]

I The total complexity is also O(
∑

dj · hj)
I However, for the graph randomly generated as described in

the problem statement
∑

(dj · hj) = O(n
√
n)

Problem I. Improvements

I Consider transposition aj — the number of ship at coordinate
j , that is reverse to what is given in the input

I It is easy to prove that the chain of ships that remain on their
initial position corresponds to a subsequence of aj with a
special property:

I it is an increasing sequence of numbers aj followed by
decreasing sequence of numbers aj

I Increasing/decreasing subsequence is a well-known problem
with O(n log n) solution using dynamic programming

0

0

1

1

2

3

3

4

4

2

Problem J. Jokewithpermutation

I This problem is solved with exhaustive search
I for each number try all positions that it can occupy
I start search with numbers that can occupy fewest number of

possible positions

Problem K. Knockout Racing

I Nothing fancy here

I Just implement what the problem statement asks for in a
straightforward way

I This is the easiest problem in the contest

