
ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem A. Abbreviation
Input file: abbreviation.in

Output file: abbreviation.out

An abbreviation (from Latin brevis, meaning short) is a shortened form of a word or phrase. In this
problem you must write an automated tool that replaces a sequence of capitalized words with the cor-
responding abbreviation that consists of the the first capital letters only, followed by a full definition in
parenthesis. See sample input and output.

Let us make some formal definitions. A word in a text is a maximally long sequence of lower and upper
case English letters. A capitalized word is a word that consists of an upper case letter followed by one
or more lower case letters. For example, “Ab”, “Abc”, “Abcd”, and “Abcde“ are all capitalized words,
while “ab”, “A”, “AB“, “ABc“ and “AbC“ are not.

An abbreviatable sequence of words is a sequence of two or more capitalized words that are separated by
exactly one space, no line breaks are allowed inside it.

An abbreviation of a an abbreviatable sequence of words is a sequence of the first (upper case) letters of
each word, followed by a single space, an opening parenthesis, the original abbreviatable sequence, and
a closing parenthesis.

Input

The input file consists of at least one line and up to 1 000 lines of text with up to 120 characters on each
line. Each line consists of spaces, upper and lower case letters, commas or dots. There are no leading or
trailing spaces on lines and there are no empty lines.

Output

Write to the output file the the original text with every abbreviatable sequence of words replaced with
with the corresponding abbreviation.

Example

abbreviation.in

This is ACM North Eastern European Regional Contest,

sponsored by International Business Machines.

The. Best. Contest. Ever.

A Great Opportunity for all contestants.

abbreviation.out

This is ACM NEERC (North Eastern European Regional Contest),

sponsored by IBM (International Business Machines).

The. Best. Contest. Ever.

A GO (Great Opportunity) for all contestants.

abbreviation.in

ab Ab A Abc AB Abcd ABc Abcde AbC

abbreviation.out

ab Ab A Abc AB Abcd ABc Abcde AbC

abbreviation.in

Oh No Extra Spaces.And,Punctuation Ruin Everything

abbreviation.out

Oh No ES (Extra Spaces).And,PRE (Punctuation Ruin Everything)

Page 1 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem B. Binary Code

Input file: binary.in

Output file: binary.out

Ben has recently learned about binary prefix codes. A binary code is a set of n distinct nonempty code
words si, each consisting of 0 and 1. A code is called prefix code if for every i 6= j neither si is a prefix
of sj nor sj is a prefix of si. A word x is called a prefix of a word w if there exists a word y, such that
xy = w.

Ben found a paper with n lines of binary code in it. But this paper is pretty old and there are some
unreadable characters. Fortunately, each word contains no more than one unreadable character.

Ben wants to know, whether these n lines could represent a binary prefix code. In other words, can he
replace every unreadable character with 0 or 1, so that the code becomes a prefix code.

Input

The first line contains integer n — the number of code words (1 ≤ n ≤ 5 · 105)

Next n lines contain nonempty code word records, one per line. Each code word record consists of “0”,
“1” and “?” characters. Every code word contains at most one “?” character that represents unreadable
character.

The total length of words does not exceed 5 · 105.

Output

Output “NO” on the first line if the code is not a prefix code.

Otherwise, output “YES” on the first line. Next n lines shall contain code words in the same order as the
corresponding word records in the input.

If there are several prefix codes, that could be written on paper, output any one.

Example

binary.in binary.out

4

00?

0?00

?1

1?0

YES

000

0100

11

100

3

0100

01?0

01?0

NO

Page 2 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem C. Cactus Construction
Input file: cactus.in

Output file: cactus.out

Let us consider the following way of constructing graphs. Pick the number of colors ĉ. Let n be the
number of a vertices in a graph. To build a graph, we start with a workspace with several graphs on it.
Each vertex of each graph has a color. Colors are denoted by integers from 1 to ĉ. Initially, we have n

graphs with one vertex in each graph, all colored to color 1, and no edges. The only vertex of i-th graph
has number i.

The following operations are permitted:

• join a b: join graphs containing vertices a and b into one graph. No edges are added. Vertices a

and b must be in different graphs.

• recolor a c1 c2: in graph containing vertex a recolor all vertices of color c1 to color c2.

• connect a c1 c2: in graph containing vertex a create edges between all pairs of vertices such that
one vertex has color c1 and the other has color c2. If c1 = c2 loops are not created. If such an edge
already exists, then the second parallel edge is created. Multiedges are not allowed in this problem,
so this case must not occur.

At the end we should have a single graph and colors of its vertices do not matter.

The minimal number of colors ĉ that can be used to construct a graph, is called a clique width of a graph.
Clique width is one of the characteristics of graph complexity. Many NP-hard problems can be solved
in polynomial time on graphs with bounded clique width, using dynamic programming on this process
of building a graph. For general graph, calculating the exact value of a clique width is known to be
NP-hard. However, for some graph classes good results are known.

Cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively
cactus is a generalization of a tree where some cycles are allowed. Multiedges (multiple edges between a
pair of vertices) and loops (edges that connect a vertex to itself) are not allowed in a cactus. It is known
that a clique width of a cactus does not exceed 4.

You are given a cactus. Find out how to build it in the described way using at most ĉ = 4 colors.

1

2 3

4

56

78

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

Input

The first line of the input file contains two integers n and m (1 ≤ n ≤ 50 000, 0 ≤ m ≤ 50 000). Here
n is the number of vertices in the graph. Vertices are numbered from 1 to n. Edges of the graph are
represented by a set of edge-distinct paths, where m is the number of such paths.

Each of the followingm lines contains a path in the graph. A path starts with an integer ki (2 ≤ ki ≤ 1000)
followed by ki integers from 1 to n. These ki integers represent vertices of a path. Adjacent vertices in
a path are distinct. Path can go to the same vertex multiple times, but every edge is traversed exactly
once in the whole input file.

Page 3 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

The graph in the input file is a cactus.

Output

On the first line print one integer q — the number of operations you need. This number should not
be greater than 106. On the next q lines print operations. Each operation is denoted by its first letter
(“j” for join, “r” for recolor and “c” for connect) and its arguments in order they are described in the
problem statement.

At the end, after applying all these operations, one should have one graph, which is equal to the cactus
in the input. This means that there should be exactly one edge between each pair of vertices connected
in the input graph, and no edges between vertices not connected in the input graph.

Example

cactus.in cactus.out

8 2

5 1 2 3 4 7

5 4 5 6 1 8

17

r 2 1 2

j 2 3

c 2 1 2

r 6 1 2

j 5 6

c 6 1 2

r 4 1 3

j 4 3

j 4 6

j 4 7

c 4 3 1

r 4 3 1

r 8 1 2

r 1 1 3

j 1 8

j 1 4

c 1 3 2

The following picture visualizes the sequence 17 operations from the first sample output. If edge is not
created yet, but it’s vertices are already in one graph, this edge is drawn as dashed.

1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78

1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78

1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78 1

2 3

4

56

78

1

2 3

4

56

78 1

2 3

4

56

78

Page 4 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

cactus.in cactus.out

15 3

9 1 2 3 4 5 6 7 8 3

7 2 9 10 11 12 13 10

5 2 14 9 15 10

39

r 7 1 2

r 5 1 2

j 7 8

c 7 1 2

j 5 4

c 5 1 2

r 6 1 3

j 6 7

j 6 5

c 6 3 2

r 3 1 4

j 6 3

c 6 4 1

r 11 1 2

r 13 1 2

j 12 11

j 12 13

c 11 1 2

r 10 1 3

j 12 10

c 10 2 3

r 10 1 2

r 10 4 2

r 15 1 3

j 15 10

c 15 3 3

j 9 10

c 9 1 3

r 9 3 2

r 9 1 4

r 14 1 4

j 9 14

c 9 4 4

r 1 1 4

r 3 1 2

j 2 1

j 2 14

j 2 3

c 2 1 4

Page 5 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem D. Delight for a Cat

Input file: delight.in

Output file: delight.out

A cat is going on an adventure.

Each hour, the cat can be either sleeping or eating. The cat cannot be doing both actions at the same
hour, and the cat is doing exactly one of these actions for the whole hour.

For each of the next n hours, the amount of delight the cat is getting if it will be sleeping or eating during
that hour is known. These amounts can be different for each hour.

An integer time period k is also known. Among every k consecutive hours, there should be at least minS

hours when the cat is sleeping, and at least minE hours when the cat is eating. So, there are exactly
n− k + 1 segments of k hours for which this condition must be satisfied.

Find the maximum amount of delight the cat can get during the next n hours.

Input

The first line of the input contains four integers n, k, minS and minE (1 ≤ k ≤ n ≤ 1000; 0 ≤
minS,minE ≤ k; minS + minE ≤ k) — the number of upcoming hours, the length of the period (in
hours), and the minimum number of hours the cat should be sleeping and eating out of every k consecutive
hours, respectively.

The second line contains n integers s1, s2, . . . , sn (0 ≤ si ≤ 109) — the amount of delight the cat gets
when it is sleeping during the first, second, ..., n-th hour.

The third line contains n integers e1, e2, . . . , en (0 ≤ ei ≤ 109) — the amount of delight the cat gets when
it is eating during the first, second, ..., n-th hour.

Output

In the first line, output a single integer — the maximum amount of delight the cat can get during the
next n hours.

In the second line, output a string of length n consisting of characters “S” and “E”. The i-th character of
this string should correspond to whether the cat should sleep (“S”) or eat (“E”) in the i-th hour to get
the maximum amount of delight out of these n hours.

Example

delight.in delight.out

10 4 1 2

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

69

EEESESEESS

Page 6 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem E. Expect to Wait

Input file: expect.in

Output file: expect.out

Mayor Adam East wants to improve the public transport network of Harshel city by introducing the
network of stations with unicycles. Any person who owns a special card can come to a station and
request a unicycle to ride or drop one.

The procedure of requesting a unicycle is simple. The person enters a queue. If there is a unicycle
available, then the first person from the queue takes it immediately. Otherwise, people in the queue wait
until someone drops a unicycle at the station.

Let the wait time be the time that person spends between the request (entrance to the queue) and
obtaining a unicycle. If the person does not receive a unicycle at all, then the wait time is equal to
infinity. The total wait time is the sum of wait times for each person.

Adam already knows the schedule of all the people for every day. He knows at what times people request
and drop unicycles at the Central Station that can hold any number of unicycles at the same time. The
only thing he does not know is how many unicycles should be placed there at the start of each day. He
asks you several questions to calculate the total wait time given the starting number of unicycles.

Input

The first line contains n and q (1 ≤ n, q ≤ 105), where n is the total number of unicycle requests and
unicycle drops at the Central Station, and q the number of questions Adam asks you. Next n lines
describe one operation at the Central Station. Each line contains one description of operation:

• “+ t k” when k unicycles are dropped at the time t;

• “- t k” when k persons request unicycles at the time t.

For each of the described operations 1 ≤ t ≤ 109 and 1 ≤ k ≤ 104. The last line of the input contains q
different integers bi (0 ≤ bi ≤ 109) — the number of unicycles at the start of the day.

The operations are given in the strongly increasing order of time.

Output

The output shall contain q lines. i-th line shall contain the total wait time for the case of bi unicycles at
the start of the day. If the total wait time is infinite, then the corresponding line shall contain the word
“INFINITY”.

Example

expect.in expect.out

5 4

- 1 1

- 2 2

+ 4 1

- 6 1

+ 7 2

0 3 1 2

INFINITY

0

8

3

Page 7 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem F. Foreign Postcards

Input file: foreign.in

Output file: foreign.out

Fedor is an avid traveler. As the result of his hobby, he has gathered a big collection of postcards from
all over the world. Each postcard has a unique picture on the front side and some fields for address
information and text on the back side.

During one of the parties at Fedor’s house, he decided to show all his postcards to the guests. To achieve
that, he wants to lay them all out on the table. Initially, all his postcards are arranged in a single stack
that Fedor is holding in his hands. Unfortunately, some of the postcards in that stack can be turned
incorrectly — upside down. Ideally, Fedor would like all postcards on the table to lie with the picture on
top, but looking at every postcard and turning it over individually can be very time-consuming. Instead,
he came up with the following process:

1. Let n be the number of postcards remaining in the stack in his hands. Fedor chooses a random
number k uniformly between 1 and n and takes top k postcards from the stack.

2. He looks at the topmost postcard among those k postcards. If it’s oriented the wrong way, he turns
the whole stack of k postcards upside down together.

3. He then puts these k postcards on the table without any further rotations.

4. If there are still some postcards remaining in the stack in his hands, Fedor goes back to step 1.

Of course, after all the postcards are on the table, there might still be some that lie back side up. What
is the expected number of such postcards?

Input

Input contains a single line consisting of “C” and “W” characters — i-th character corresponds to i-th
postcard in the stack, counting from the top of the stack. C means that i-th postcard is oriented correctly
in the initial stack, and W means that i-th postcard is not oriented correctly. The number of characters
is between 1 and 1 000 000 inclusive.

Output

Output one real number — the expected number of incorrectly placed postcards on the table. The
absolute or relative error should not exceed 10−9.

Example

foreign.in foreign.out

CWCC 1.0

WWCWCCW 2.333333333333

Page 8 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem G. Game on graph

Input file: game.in

Output file: game.out

Gennady and Georgiy are playing interesting game on a directed graph. The graph has n vertices and m

arcs. Gennady and Georgiy have a token placed in one of the graph vertices. They make moves in turn.
On his move a player must move the token along one of the arcs that starts in the vertex the token is
currently in. When there is no such arc, then this player loses the game.

For each initial position of the token and the player who is moving first, your task is to determine what
kind of result the game is going to have. Seems to be easy? Not so much.

On one side, Gennady is having a lot of fun playing this game, so he wants to play as long as possible.
He even prefers a strategy that leads to infinite game to a strategy that makes him a winner. But if he
cannot make the game infinite, then he obviously prefers winning to losing.

On the other side, Georgiy has a lot of other work, so he does not want to play the game infinitely.
Georgiy wants to win the game, but if he cannot win, then he prefers losing game to making it infinite.

Both players are playing optimally. Both players know preferences of the other player.

Input

In the first line there are two integers — the number of vertices n (1 ≤ n ≤ 100 000) and the number of
arcs m (1 ≤ m ≤ 200 000). In the next m lines there are two integers a and b on each line, denoting an
arc from vertex a to vertex b. Vertices are numbered from 1 to n. Each arc is listed at most once.

Output

In the first line print n characters. i-th character should denote the result of the game if Gennady starts
in vertex i. In the second line print n characters. i-th character should denote the result of the game if
Georgiy starts in vertex i. The result of the game is denoted by “W” if the starting player wins the game,
“L” if the starting player looses the game, and “D” if the game runs infinitely.

Example

game.in game.out Illustration

6 7

1 2

2 1

2 3

1 4

4 1

4 5

5 6

WDLDWL

DWLLWL
1

2 4

3 5

6

Note

In vertices 3 and 6 the game is already lost. In vertex 5, the only move is to vertex 6, and this player
wins. If Georgiy starts in vertex 1, or Gennady in vertices 2 or 4, Gennady can always go to vertex 1,
and make the game infinite. If Georgiy starts in vertex 4, he can either go to vertex 1 (which leads to
a draw) or to vertex 5, which leads to losing. Georgiy prefers the latter. Similarly, from vertex 2, he
prefers to go to 3 and win. From vertex 1, Gennady can go to vertex 2 and lose, or go to vertex 4 and
win. He prefers the latter.

Page 9 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem H. Hard Refactoring

Input file: hard.in

Output file: hard.out

Helen had come upon a piece of code that uses a lot of “magical constants”. She found a logical expression
that checks if an integer number x belongs to a certain set of ranges, like the one shown below:

x >= 5 && x <= 10 ||

x >= 7 && x <= 20 ||

x <= 2 ||

x >= 21 && x <= 25 ||

x >= 8 && x <= 10 ||

x >= 100

Helen does not like “magical constants”, so she decided to refactor this expression and all similar ones
in such a way, that the refactored expression still has the same boolean result for all integer numbers x,
but it uses as few integer literals as possible.

Integers in this problem, including integer x, come from the range of all signed 16 bit integer numbers
starting from −215 (−32 768) to 215 − 1 (32 767) inclusive.

Input

The input file contains at most 1000 lines. Each line contains either one comparison or two comparisons
separated by boolean and operator “&&”. Each comparison starts with “x”, followed by greater-or-equals

operator “>=” or less-or-equals operator “<=”, followed by an integer. When two comparisons are on the
same line, the first one is always greater-or-equals, followed by less-or-equals.

All lines, but the last one, are terminated by boolean or operator “||”. All tokens one a line are separated
by a single space and there are no trailing or leading spaces.

Output

Write the refactored expression to the output file in the same format as in the input. You can arrange
lines in any order, as long as the resulting expression has the right format, produces the same boolean
result on all integer numbers x, and contains the minimal possible number of integer numbers in its
representation. Numbers must be formatted without leading zeros and there must be precisely one space
between tokens on a line.

Write a single line with the word “true” if the expression is true on all integers. Write a single line with
the word “false” if the expression is false on all integers.

Example

hard.in hard.out

x >= 5 && x <= 10 ||

x >= 7 && x <= 20 ||

x <= 2 ||

x >= 21 && x <= 25 ||

x >= 8 && x <= 10 ||

x >= 100

x <= 2 ||

x >= 5 && x <= 25 ||

x >= 100

x >= 10 && x <= 0 false

x <= 10 ||

x >= 0

true

x >= -32768 true

Page 10 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem I. Indiana Jones and the Uniform Cave
Input file: standard input

Output file: standard output

Indiana Jones had stuck in the Uniform Cave. There are many round chambers in the cave, and all of
them are indistinguishable from each other. Each chamber has the same number of one-way passages
evenly distributed along the chamber’s wall. Passages are indistinguishable from each other, too. The
Cave is magical. All passages lead to other chambers or to the same one. However, the last passage,
after all passages are visited, leads to the treasure. Even the exact number of chambers is a mystery. It
is known that each chamber is reachable from each other chamber using the passages.

Dr. Jones noticed that each chamber has a stone in the center. He decided to use these stones to mark
chambers and passages. A stone can be placed to the left or to the right of one of the passages. When
Indiana enters the chamber all that he can observe is the location of the stone in the chamber. He can
move the stone to the desired location and take any passage leading out of the chamber.

Help Indiana Jones to pass every passage in the Uniform Cave and find the treasure room.

Interaction Protocol

First, the testing system writes the number m — the number of passages in each chamber (1 ≤ m ≤ 20).

Dr. Jones enters the chamber and sees, on the next line, where the stone is placed: either in the center
of the chamber or to the left, or to the right of some passage. On the first visit to the chamber, the
stone is in the center.

Your solution shall output Indiana’s actions: the number and the side of the passage to place the stone
to, and the number of the passage to take. Both numbers are relative to the passage marked by the stone,
counting clockwise from 0 to m− 1. If the stone is in the center of the chamber, the origin is random.

For example, “3 left 1” tells that Dr. Jones moves the stone three passages clockwise and places it to
the left of the passage, then Dr. Jones takes the passage to the right of the initial stone position.

After each move testing system tells either the location of the stone in the next chamber or “treasure”,
if Dr. Jones had found it. The testing system writes “treasure” when all the passages are visited.

If Dr. Jones does not find the treasure room after 10 000 passages taken, he starves to death, and your
solution receives the “Wrong Answer” outcome. You also receive this outcome if your solution terminates
before all passages were taken.

The total number of chambers in the cave n is unknown, but you may assume that 1 ≤ n ≤ 20 and each
chamber is reachable from every other chamber.

Example

standard input standard output

2

center

left

center

left

right

treasure

1 left 0

0 left 0

1 right 0

0 left 0

1 right 0

Dr. Jones enters the example cave and sees that the stone in the first chamber is in the center. He marks
the chamber by placing the stone on the left of some passage and takes another one. He sees the chamber
where the stone is on the left of the passage, so he is in the first chamber again. He leaves the stone in
place and takes the passage marked by it. This passage leads to the second chamber. He marks it by
placing the stone on the right of some passage and takes another one. He is in the first chamber again, so
he returns to the second chamber and takes the remaining passage. This passage leads to the treasure.

Page 11 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem J. Jenga Boom

Input file: jenga.in

Output file: jenga.out

Jane is a game designer and she designs the next version of Jenga Boom, where the blocks have dimensions
of 1×w×wn instead of the ordinary 1×2×6. As usual, the initial tower is created at the game start. It
consists of the blocks in levels of n blocks placed next to each other along their long sides and at a right
angle to the previous level. Players remove blocks from the tower in turns, until the tower collapses.

1

2

3

4

5

6

11 22 33 44 55

Initial tower

1

2

3

4

5

6

11 22 33 44 55

Tower before collapse

Jane wants to build a game simulator that helps her to decide the best n and w. The simulator shall
compute the moment when the tower collapses if blocks are removed in the specified order. Tower
collapses if there is a cross-section between levels such that the center of the mass of the levels above it
does not belong to or is at the edge of the convex hull of the previous level projection.

Input

The first line contains two integers n and w that define the dimensions of the block as described in the
problem statement (1 ≤ n,w ≤ 10 000). The second line also contains two integers: h — the number of
levels in the tower and m — the number of removed blocks (1 ≤ h,m ≤ 5 000).

The following m lines contain coordinates of the removed blocks with two integers each: li — the level of
the block, counting from the bottom and ki — the position of the block, counting from the edge nearest
to the players. Blocks are removed one by one and no block is removed twice (1 ≤ li ≤ h, 1 ≤ ki ≤ n).

Output

In the first line output “yes” if the tower collapses, and “no” otherwise. In the former case, output the
number of the block (starting from 1) that was removed just before the collapse.

Example

jenga.in jenga.out

5 2

6 6

4 1

4 2

4 5

5 3

4 3

1 1

yes

5

3 3

10 1

10 3

no

2 2

2 1

1 1

yes

1

Page 12 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem K. Kids Designing Kids

Input file: kids.in

Output file: kids.out

Kevin and Kimberly have freckles on their foreheads.

They both drew their freckle pictures on sheets of paper. Each picture is a rectangle of “pixels”: every
cell either has a freckle or does not.

They are jokingly proposing that when they grow up, marry and have a child, her freckle picture will be
a result of the following procedure:

Kevin’s and Kimberly’s pictures will be moved by a parallel translation, and then in each cell, a child
will have a freckle if and only if exactly one of the parents has a freckle in this position.

Now they wonder, whether there is a parallel translation that will give their clild a specific freckle picture
(for example, a lightning), and what is this parallel translation.

Input

The first line contains two integers, h1 and w1 (1 ≤ h1, w1 ≤ 1000) — the height and the width of Kevin’s
freckle picture. Each of the next h1 lines contain w1 characters ‘*’ and ‘.’. Character ‘*’ means that
there is a freckle, and ‘.’ that there is not.

The following lines contain Kimberly’s picture in the same format. Its height and width h2 and w2 follow
the same constraints.

It is guaranteed that Kevin and Kimberly has at least one freckle each.

The following lines contain the picture they want their clild to have. Its dimensions h3 and w3 also have
the same constraints.

Output

On the first line output “YES” if the desired picture can be received, and “NO” otherwise.

If the answer is positive, on the second line output two integers, x and y, with the following meaning. If
you overlay the pictures so that their upper left corners coincide, then move Kimberly’s picture x cells
right (negative number means moving picture left) and y cells down (negative number means moving
picture up), and then apply the procedure described above, the resulting picture will can moved by a
parallel translation to coincide with the third picture from the input file.

Example

kids.in kids.out

3 3

..*

.*.

.

3 3

**.

..*

.*.

5 2

.*

*.

**

.*

*.

YES

0 2

Page 13 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem L. List of Primes
Input file: list.in

Output file: list.out

Lidia likes sets of prime numbers. When she is bored, she starts writing them down into the Extremely
Long Notebook for Prime Sets.

Elements of each set are written down in ascending order. Each set of prime numbers will appear in her
notebook eventually. A set with a smaller sum always appears before a set with a larger sum. Sets with
the same sum are sorted in ascending lexicographical order: they are compared by the first element, if
they are equal then by second element, and so on.

Just in case someone decides to parse her notebook, she writes down her sets in machine-readable JSON
format. Of course, she puts a space after each comma. Here’s the beginning of her notebook:

[2], [3], [2, 3], [5], [2, 5], [7], [3, 5], [2, 7], [2, 3, 5], [3, 7], [11], [2, 3, 7], [5, 7], [2, 11], [13], [2, 5, 7],

Lidia wants to double-check her work, so here is her request to you: given two integers, a and b, output
a substring of her notebook from position a to position b (inclusive, counting from 1).

Input

The first line contains two integers, a and b (1 ≤ a ≤ b ≤ 1018; b− a ≤ 105).

Output

Output the substring of the notebook described in the problem statement from position a to position b.
You must write a line with exactly b− a+ 1 characters, including any leading and/or trailing spaces.

Example

list.in list.out

1 35 [2], [3], [2, 3], [5], [2, 5], [7],

36 41 [3, 5

Page 14 of 15

ACM ICPC 2016–2017, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi, December 4, 2016

Problem M. Mole Tunnels
Input file: mole.in

Output file: mole.out

Moles create tunnels for two purposes — for traveling and for feeding. In this problem we investigate
one tunnel system which was built by moles. It consists of n holes and n − 1 tunnels connecting them.
Let us number all holes from 1 to n. Then for all i > 1, a hole number i is connected by a tunnel to a
hole number ⌊ i

2
⌋. Tunnels are bidirectional. For each hole i we know the amount of food ci in that hole.

It means that there is enough food for exactly ci moles in that hole.

There are m moles living in the tunnel system. For mole i you are given a number pi — a hole number
where mole i is currently sleeping. In the morning the first k moles wake up and want to eat while m− k

others are sleeping. Each of them chooses some hole and crawls to it. They are quite smart so they
want to minimize the total distance travelled. The distance travelled by one mole is the total number of
tunnels which it uses to get from one hole to another. The first k moles who woke up early want to move
in such a way, so that there is enough food at the holes they choose to crawl to for them. It means that
after all movements are done in hole i there are no more than ci not sleeping moles.

You must to find the minimum total distance for all k from 1 to m. It is guaranteed that there always
exists a way for all moles to eat.

Input

The first line contains two integers n and m (1 ≤ n,m ≤ 105) — the number of holes and moles. The
second line contains n integers ci (0 ≤ ci ≤ m) — the amount of food in hole i. The third line contains
m integers pi (1 ≤ pi ≤ n) — the starting positions of the moles.

Output

You must print m numbers. The k-th number is the minimum total distance the first k moles need to
travel if they woke up first.

Example

mole.in mole.out

5 4

0 0 4 1 1

2 4 5 2

1 1 2 4

1

2 3

4 5

k = 1

1

2 3

4 5

k = 2

1

2 3

4 5

k = 3

1

2 3

4 5

k = 4

Dashed arrows show possible moles movement which minimizes total distance. For example for k = 2
first mole goes from hole 2 to hole 5 and second mole stays in hole 4.

Page 15 of 15

