
Admissible Map
Problem author and developer: Ilya Zban

Let’s call any string of shape “RLRL...RL” trivial.

Lemma: any non-trivial string has at most one constitution as an admissible map.

Proof: let’s consider string s0s1 . . . s|s|−1, and i be a first even number such that sisi+1 6=“RL”. There can
be a few cases:

• si=“L”. String s doesn’t have a constitution as an admissible map, as either the i-th symbol will be
on the left edge of the matrix (and its edge isn’t directed to any other cell), or it points to the left,
to “RL” so there are two incoming edges to neighboring “L” (or it points out of the matrix).

• si=“U”. String s doesn’t have a constitution as an admissible map, as either the i-th symbol will be
on the upper edge of the matrix (and its edge isn’t directed to any other cell), or it points to some
pair “RL”, that should be matched to each other.

• si=“R”. As si+1 6= “L”, the only incoming edge to i-th cell can be “U”. And we can notice that it can
only be the first “U” in the string, as otherwise the first “U” would point either outside of the matrix
or to some “RL” pair. So, if sj is the leftmost “U”, string s can only be constituted as |s|

j−i × j − i
map.

• si=“D”. Let’s say that k = i if si+1 6= “L”, and otherwise take k as maximal number such that
si+1 . . . sk =“LLL..L”. Substring si . . . sk should be in same row of matrix, and as sk+1 6=“L”, by
same argument as above we can see that the first “U” in the string should point to sk. So, string s
can only be constituted as |s|

j−k × j − k map.

So, the shape n×m of a matrix for any non-trivial substring slsl+1 . . . sr is determined only by the position
of the first “U” after l. We can compute an array ml meaning that any substring slsl+1 . . . sr should be
constituted as r−l+1

ml
×ml matrix. This array can be computed in linear time directly from proof.

Using ml we can iterate over all r = l+ t ·ml for all t, and check all substrings slsl+1 . . . sr. We need to be
able to quickly determine if substring si . . . si+ml−1 can be a top, middle or a bottom row of constituted
matrix. It can be done in O(1) time.

Let’s consider the case of the middle row (other cases are similar). We want to check that no edge from
si . . . si+ml−1 goes outside of the matrix and that each cell has exactly one incoming edge. First, we need to
check that si 6=“L” and si+ml−1 6=“R”. Conditions on incoming edges can be tested using hashes. We choose
a hash base x, and build 4 arrays ac0 . . . ac|s|−1 (c in “ULDR”) such that aUj = xj if sj =“U”, aDj = xj if sj =“D”,
aRj = xj+1 if sj =“R” and aLj = xj−1 if sj =“L”, and all other values are zero. Then we can see that each

cell from si . . . si+ml−1 has one incoming edge if xml

i−1∑
t=i−m

aDt +
i+l−1∑
t=i

(aLt +aRt)+x−ml

i+2m−1∑
t=i+m

aUt =
i+l−1∑
t=i

xt.

This check can be done in constant time using a precomputed array of prefix sums.

Using these checks we can iterate over all non-trivial substrings, test them and add missed trivial strings.
This solution works in O(s2).

We can further notice that for each l we iterate over all possible |s|ml
possible r-s with step ml. We can count

all l that have both the same ml and l mod ml together, as we just do a lot of duplicated work in that

case. This optimization gives us a very fast solution that works in O(
s∑

m=1

s
m ·min(cntm,m)) = O(s

√
s) in

worst case (here cntm is the number of different remainders l mod ml for each m).

Page 1 of 1

