Labyrinth

Problem author: Michael Mirzayanov; problem developers: Sergey Melnikov, Michael Mirzayanov

Let the required two paths have the form:

® S =uUp,U,...,Usl;

® S =1U1,V2,...,0y,L.

Let us show that there is always a pair of required paths such that the vertices u, and v, (that is, the
penultimate vertices of the paths) lie in different subtrees of any depth-first search tree rooted at s. This
only applies when both vertices are different from s.

There is a separate corner case in this problem when u, = s or v, = s. Just remember about it, it is easy
to handle it in code.

Indeed, let’s take ¢ such that the distance from s to ¢ is minimal.

Suppose this is not the case and there is a depth-first search tree such that vertices u, and v, are in the
same DFS subtree rooted at s. But since ¢ is the answer, there are two distinct vertex-disjoint (except
vertices s and t) paths: ui, ua, ..., ug,t and vi,v,. .., vy,t.

Since u1 # v1, then at least one of these paths starts not in the subtree where u, and v, are located.
Without loss of generality, let this path be uy,us,...,us, t. Find the first vertex in it (minimum index
j) such that u; belongs to the path in the DFS tree from s to u,. Thus, we have built a pair of non-
intersecting paths (from s to u;) that end at the same vertex, and this vertex is closer to s than t. We
get a contradiction with the fact that the distance from s to ¢ is minimal.

Thus, it is enough to run a depth-first search and choose such a vertex as t, such that:

e let the DF'S parent of vertex ¢ be vertex uy,

e ¢ has an edge from some vertex v,, which in this DFS tree is in a different DFS subtree than ¢
relative to the root s (or vy = s and ug # s).

These paths in DFS tree (from s to u, and from s to v,) will induce the required paths.

Page 1 of 1



