
Labyrinth
Problem author: Michael Mirzayanov; problem developers: Sergey Melnikov, Michael Mirzayanov

Let the required two paths have the form:

• s = u1, u2, . . . , ux, t;

• s = v1, v2, . . . , vy, t.
Let us show that there is always a pair of required paths such that the vertices ux and vy (that is, the
penultimate vertices of the paths) lie in different subtrees of any depth-first search tree rooted at s. This
only applies when both vertices are different from s.

There is a separate corner case in this problem when ux = s or vy = s. Just remember about it, it is easy
to handle it in code.

Indeed, let’s take t such that the distance from s to t is minimal.

Suppose this is not the case and there is a depth-first search tree such that vertices ux and vy are in the
same DFS subtree rooted at s. But since t is the answer, there are two distinct vertex-disjoint (except
vertices s and t) paths: u1, u2, . . . , ux, t and v1, v2, . . . , vy, t.

Since u1 6= v1, then at least one of these paths starts not in the subtree where ux and vy are located.
Without loss of generality, let this path be u1, u2, . . . , ux, t. Find the first vertex in it (minimum index
j) such that uj belongs to the path in the DFS tree from s to ux. Thus, we have built a pair of non-
intersecting paths (from s to uj) that end at the same vertex, and this vertex is closer to s than t. We
get a contradiction with the fact that the distance from s to t is minimal.

Thus, it is enough to run a depth-first search and choose such a vertex as t, such that:

• let the DFS parent of vertex t be vertex ux,

• t has an edge from some vertex vy, which in this DFS tree is in a different DFS subtree than t
relative to the root s (or vy = s and ux 6= s).

These paths in DFS tree (from s to ux and from s to vy) will induce the required paths.

Page 1 of 1


